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Abstract

Earables (smart headphones) are the cutting edge of wearable technology, allow-
ing users to combine leisure with sensing. They offer a number of advantages for
inertial navigation, with reduced noise due to muscoloskeletal damping by being
in the upper body and two independent measurements from both ears.

No commercially available earable contains a magnetometer, which is traditionally
an important part of heading estimation. Therefore, I designed and manufac-
tured a custom 3D printed earable platform. This includes an Arduino MCU
board, 9-axis IMU (with a magnetometer), temperature sensor, pressure sensor,
microphone and 550 mAh LiPo battery (with a power management system). The
prototype was used to collect a unique in-the-wild dataset from six individuals
walking around in a variety of noise environments.

I propose a novel earable IMU calibration framework, building on work by Sipos
et al. [2], Shen et al. [3] and Ferlini et al. [1]. I also devise the best heading
estimation and displacement estimation methods for earables.

I also develop a framework for position tracking for earable. Using the heading
calculated with the magnetometer and pedestrian dead reckoning, I achieve a min-
imum average tracking drift for one earable of 0.15ms

�1 and heading error of 9°.

Finally, I research how to fuse the measurements of two earables. I demonstrate
that using a particle filter to combine headings leads to a 27% reduction in track-
ing drift. I also propose a novel low-power accurate (<15m error) smartphone
tracking method using earables with a 65% power usage reduction compared to
continuous GPS tracking.
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Chapter 1

Introduction
Inertial Navigation Systems (INS) use inertial measurement units (IMUs) to maintain the location of a device
without needing GPS. Earables (in-ear wearables) is an exploding area for wearable research. They allow
users to combine leisure with sensing. Earables offer a number of potential advantages over other wearables
for tracking, including reduced noise and two independent measurements (one from each ear). In this
dissertation, I produce the first inertial navigation system for earables with an average drift of 0.15ms

�1 for
one earable and 0.11ms

�1 when fusing both earables.

To do this, I had to overcome a number of significant challenges. The first challenge is the lack of an existing
earable sensing platform with a magnetometer. Hence, in Chapter 3, I design and manufacture a new proto-
type portable earable sensing platform with a powerful Arduino microcontroller with a 9-axis IMU (including
a magnetometer), Bluetooth transceiver, audio output, temperature, pressure sensor and microphone.

Additionally, there is a lack of existing earable IMU data, so in Chapter 4, I collect the first of its kind
in-the-wild IMU earable dataset.

A third challenge is earable IMU calibration. Thus, after benchmarking various techniques, I define an
effective calibration framework, using accelerometer calibration by Sipos et al. [2], gyroscope calibration
by Shen et al. [3] and magnetometer calibration by Ferlini et al. [1]. As part of the latter calibration, I devise
a novel calibration point filtering and discarding strategy.

I also develop a framework for position tracking for earables. I define the best heading estimation approach,
combining a gyroscopic approach and magnetometer approach with a complementary filter. My approach
outperforms existing fusion algorithms. I find the best displacement estimation method to be pedestrian
dead reckoning, which outperformed a kinematics approach by 93%.

Finally, I devise a novel multi-device sensor fusion approach to combine both earables. The proposed
approach reduces power usage for accurate tracking by 65% by incorporating occasional GPS updates, whilst
reducing tracking drift by 27% when maximising performance.

1.1 Earables

Earables involve adding new sensors to headphones. These sensors range from motion sensors (the focus
of this thesis) to medical sensors and microphones. In this thesis, I design an around-the-ear 3D printed
custom earable platform that could be used for a wide array of earable research. The choice to design my
own earable arises from no commercial earables containing a magnetometer.

Earables offer several potential benefits for inertial navigation:

• The location of earables on a user’s head means that motion sensors encounter less noise [4], due to
muscoloskeletal damping. As a result of this, motion sensors in earables present less noise (better
defined peaks) compared to those in phones and smartwatches (Figure 1.1), offering advantages for
tracking. In this thesis, I find that an INS performed 37% better on earables than on a smartphone.

• Earables can offer auditory feedback. This is a particularly effective method of informing users of
outputs of a system.

1



• Tracking the head’s movements with earables opens the door to new opportunities compared to
tracking the movement of a user’s leg or hand. For example, the heading of an earable can be taken
as a proxy for visual attention [5].

In this thesis, in addition to real-time tracking, I devise a new solution to guide a user to the correct
exit at a complicated intersection, outputting differing tones to tell them when they are looking in the
correct direction.

• Earables offer two independent measurements (one from each earable). The data from these can be
combined. In Chapter 7, I propose methods to combine data from earables to reduce the earable
tracking drift by 27% and power usage of smartphone tracking by 65%.

Fig. 1.1: Norm of acceleration of phone and earable

Compared to other mobile devices, earables also present a number of specific challenges. Earables need to
be small to comfortably sit in or on a user’s head for long periods of time. When creating my prototype,
I am mindful of components and features to include to keep the device wearable.

Additionally, magnetometers, which are an important part of tracking, experience significant interference
both from the magnet in integrated speakers and the electromagnetic field generated by Bluetooth audio
transmission. In this project, I use Ferlini et al.’s semi-automatic calibration [1] to eliminate this noise,
improving the performance of heading tracking by 37%.

1.2 Inertial Navigation

Inertial Navigation consists of a few stages. In the first stage, you take and pre-process raw data from the
IMU. The raw data that comes from these sensors is noisy and often contains a temporal drift. The first
challenge is to effectively calibrate these sensors. There are a number of possible calibration models, which
have not been tested on earables. In this dissertation, I test calibration methods to produce an effective
calibration framework.

Secondly, the pre-processed data is used to find the orientation of the device. The yaw can be found by
using the magnetometer or gyroscope. This report shows that combining the two performs better. There
are several algorithms to do this, I compare them in Chapter 6.

Finally, I use the heading and linear acceleration to find the change in (x, y) position of the user at each
timestamp. In this dissertation, I adapt an existing pedestrian dead reckoning model to complete step length
estimation effectively on earables.

1.3 Contributions

With the challenges of earables and inertial navigation in mind, it is possible to summarise the contributions
of this dissertation as follows:

2



1. I design and manufacture two novel earable prototypes (Figure 1.2) for collecting and transmitting
motion data (9-axis IMU) over Bluetooth Low Energy (BLE) and providing audio feedback. The device
is designed to use minimal power and can run for over a day of continuous use. It also contains other
sensors (temperature, pressure, microphone) which we don’t experiment with, so the device can be
used as a platform for earable experimentation in the future.

Fig. 1.2: Final earable prototype

2. I collect a new in-the-wild dataset collecting IMU data from earables and an iPhone. The user study
in agreement with the university ethics committee captures data of six users walking both inside and
outside, in low noise and high noise situations. There is no similar publicly available data, and this
data will be shared with the research community.

3. I devise a comprehensive framework for IMU sensor calibration on earables, evaluating and adapting
existing calibration methods for accelerometers, gyroscopes and magnetometers.

4. I evaluate heading estimation algorithms for earables, defining a novel effective method which leverage
a complementary filter to combine gyroscopic and magnetometer heading.

5. I devise an effective pedestrian dead reckoning method adapting Lu et al.’s [6] method to estimate
displacement.

6. I implement near real-time tracking on an iPhone wirelessly connected to an earable.

7. I create a novel method to guide users to a particular heading combining tracking and audio feedback
on earables.

8. I propose a method to fuse measurements from two earables to improve the accuracy of tracking by
26.8%.

9. I create a novel smartphone tracking method using earables to reduce the power usage of accurate
(<15m error) tracking by 69.0%
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Chapter 2

Background
This chapter starts by putting my work into the context of existing systems, before moving onto discussing
important related work.

2.1 Existing Complete Systems

Tracking users without GPS is not new. Generally, due to tracking drift, systems are used to supplement
other navigation systems. For example, the Honeywell LaseREf [7] uses GPS and inertial navigation to
maintain an accurate aircraft position.

With the invention of MEMS, INSs have been implemented on smartphones [8], smartwatches [9] and
even smartglasses [10]. Loh et al.’s smartglasses work [10] provides an insight into possible gains that the
muscoskeletal dampening effect could have for an INS system and motivates this dissertation for earables.

The audio feedback system I produce has been made before. However, tracking generally come from
ultrasonic sensors [11] or computer vision [12]. Lee et al. [13] produced a tool that uses a gyroscope but this
supplements computer vision.

2.2 Earable Prototype Design

In Chapter 3, I design a prototype earable. As part of my research, I looked at existing earables. One such
earable is the the eSense platform [14], using an in-ear design. I also looked at more realistic ‘lab prototypes’
such as Ota et al. [15] and Pham et al.’s designs [16]. These used an around-ear design to allow for space
for hand-soldered electronics. These prototypes were all 3D printed, out of ABS or PLA.

2.3 Inertial Navigation

As discussed in Chapter 1, inertial navigation consists of three stages.

1. Pre-processing: Calibration of IMU data.

2. Heading Estimation: Using IMU data to find the heading of the device.

3. Displacement Estimation: Using IMU data to find the change in position of the user.

2.3.1 Sensor Calibration

Sensor calibration is particularly important for MEMS IMUs. I first look at the effects that lead to noise before
discussing correction methods.

Sources of Noise

The first source of noise is electrical noise from the circuitry that converts motion into a voltage. This is the
most significant noise and manifests as a constant bias.

f(x,b)⇠x�b
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Thermo-mechanical noise arises from the changing temperatures of nearby components. Leland et al. [17]
demonstrate that this noise is Gaussian. Woodman et al. [18] extend this to accelerometers.

f(x,b,�1)⇠N (x�b,�1)

Finally, temperature effects introduces biases which grow over time. These tend to be linear [19], but can
also be more complex [18].

Hence, one can estimate the reading of a sensor as:

f(x,b1,b2,b3,...,bn,�1,t)⇠N (x�b1�b2t�b3t
2�...�bn�1

n ,�1) (2.1)

The temporal drift does not exist for magnetometers, since they use a constant point of reference, the Earth’s
magnetic field. For a magnetometer, the main source of noise is magnetic interference from nearby devices.

Offset Finding

The simplest accelerometer and gyroscope calibration method involves finding the IMU static bias [20]
combined with a moving window (empirically set to 1

4s). Hence, the calibration is as follows:

For a stationary calibration clip:

b=
1

n

nX

n=1

x (2.2)

For live sensor usage:

x0t=
1

z

tX

t0=t�z

xt0�b (2.3)

In practise this method doesn’t always work well, so I consider specific accelerometer and gyroscope
calibration methods.

Accelerometer Calibration

Frosio et al. Error Model Frosio et al. [21] leverage a model as follows, where A is the raw sensor output
and A0 is the calibrated output:

A0=S(A�O) (2.4)

S=

2

64
Sxx Sxy Sxz
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3
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2

64
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Oy

Oz

3

75 (2.5)

The authors describe a calibration process where the device is placed in several orientations, capturing
accelerometer data for each. The error for a particular orientation k is equal to:

ek=a
2
x+a

2
y+a

2
z�g

2 =
X

i=x,y,z

8
<

:
X

j=x,y,z

h
Sij ·
�
Aj,k�Oj

�i2
9
=

;�g
2 (2.6)

The authors minimise the cumulative sum of squares of the errors ek for all ks. They describe using Newton’s
method for quadratic convergence (described by Moré et al. [22]) to find the optimal values of S and O.
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Sipos et al. Error Model Sipos et al. [2] describe a slightly different error model consisting of nine unknown
parameters - three scale factor corrections, three angles of non-orthogonality and three offsets.
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Compared to Frosio et al.’s model, S is approximated into a separate transformation and scale factor matrix.
This estimation reduces the likelihood of over-fitting to the calibration clips. Sipos et al. also describe a
different algorithm for optimisation of the parameters, using the Levenberg-Marquandt Algorithm (described
by Yamashita et al. [23]).

Magnetometer Calibration

Magnetometers experience minimal temporal drift, but often require frequent re-calibration to deal with
differing background magnetic noise. Ferlini et al. demonstrate (Figure 2.1) [5] that for earables, the
magnetometer experiences significant noise during audio playback.

Fig. 2.1: Demonstration of additional magnetometer noise caused by music

Ferlini et al. propose a novel semi-automated calibration method [5] motivated by the average smartphone
owner unlocking their phone 150 times a day [24]. When unlocking the device, a user’s phone and earables
are aligned. Hence, one can utilise a few seconds of earable readings at these times and the calibrated phone
heading (which fuses GPS to maximise accuracy) to calibrate the earable magnetometer, using a simple offset
model.

m0=(m�b) (2.8)

The error per reading is defined as:

ei=arctan
yraw�yoffset
xraw�xoffset

�phone calibrated heading (2.9)

As with Section 2.3.1, the authors minimise the sum of squares of the heading errors of calibration points.
However, this method assumes that the earth’s magnetic field runs perpendicularly to the earth. This is not
true other than at the equator, requiring tilt compensation.

Tilt Compensation For, tilt compensation, one first finds the pitch (✓) and roll (�) angles from the ac-
celerometer [25]. This can only be found when the accelerometer is at rest (kak⇡g).

�=arctan
ay

az
(2.10)
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✓=arctan
�ax

aysin�+azcos�
(2.11)

With the angles ✓ and �, the magnetometer readings are rotated to the flat plane where ✓=�=0
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Gyroscope Calibration

Initially, for gyroscopes, it is possible to use the same models as for accelerometers since Woodman et al. [18]
show that they encounter similar noise. The expected rotation rate of a gyroscope at rest is zero. However,
this is not particularly effective and it would be better to calibrate the gyroscope when it is moving. Therefore,
I consider two calibration methods.

Yang et al. Calibration Yang et al.’s model [26] includes a bias (B), scale factor (K), random error (v),
non-orthogonality error (M) and a package misalignment error (C).
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To find the correct values of the package misalignment error and scale factor, the authors require the
gyroscope to be moving at a known rotational rate. In Yang et al. they utilise a single-axis turntable.

Shen et al. Calibration Shen et al. [3] propose a method to find the attitude of an IMU. As part of this, they
describe a method to continuously recalibrate gyroscope readings. More precisely, the method recalibrates
the heading angle measured purely by the gyroscope using the method described in Section 2.3.2.

To do this, they first filter accelerometer readings to find when kak ⇡ g. Then, the authors find the dif-
ference between the heading measured by the gyroscope and the heading measured by the (calibrated)
magnetometer. This is used to find a rotation offset.

2.3.2 Heading Estimation

Given a calibrated IMU, the next step is estimating the heading of the user.

Throughout the rest of this section, I am going to present the maths in terms of quaternions. Quaternions
consist of a scalar part s 2R and a vector part v=(x,y,z), v2R3. Every unique rotation in 3D space can
be represented by a unit quaternion.

Heading from Gyroscope

To get the heading from a gyroscope, I maintain a quaternion (q) per time step and integrate the measure-
ments of the gyroscope [27]. This is done using a Taylor series:

qt+1=qt+q̇t�t+
1

2!
q̈t�t

2+
1

3!

...
qt�t

3+··· (2.14)

This is generally truncated to the second term, as this expression has a rapidly reducing error. Hence, it’s

7



necessary to find an expression for q̇. This is found through first principles and is described by Sola [28].

q̇=
1

2

2

6664

�!xq0�!yq1�!zq2
!xq3+!zq1�!yq2
!yq3�!zq0+!xq2
!zq3+!yq0�!xq1

3

7775
(2.15)

Given a quaternion for each time step, the attitude is converted to Euler angles:
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(2.16)

The heading is the yaw ( ).

Heading from Magnetometer

Getting the heading from a magnetometer is much simpler:

 =arctan
my

mx
(2.17)

In practice the results of the heading from the magnetometer and gyroscope should be combined. I survey
a number of approaches that fuse these headings.

Complementary Filter

The first such method is a complementary filter (used by Shen et al. [3]). Here, one independently finds the
heading using the magnetometer and gyroscope. These two headings can be any two headings.

The two headings are fused as follows:

✓=(1�↵)✓!+↵✓m (2.18)

The choice of ↵ determines how much of each method is used. Shen et al. [3] suggest using a low value
to fuse the gyroscope and magnetometer heading. Other papers suggest increasing the value of ↵ over time,
as the gyroscopic drift increases.

Madgwick Filter

This filter was originally designed to fuse gyroscope and accelerometer headings but was extended to also
use magnetometer data [29]. Madgwick filters use gradient descent to enable better performance at lower
sampling rates.

As with the complementary filter, the attitude (3D heading) is estimated from the gyroscope using numerical
estimation. An attitude estimation is also found from the accelerometer using gradient descent to solve the
following minimisation problem, which denotes finding the minimal rotation to take the acceleration to the
gravitational force.

f= min
q2R4⇥1

q⇤⌦g⌦q�a (2.19)
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In this approach, the heading from the accelerometer and gyroscope is fused with a complementary filter:

qt=�tq̇!,t+(1��t)q�,t+1 (2.20)

Madgwick [29] also demonstrates how to add the magnetometer, minimising the error in accelerometer and
magnetometer heading simultaneously by changing the optimisation function.

Mahony Filter

The Mahony Filter [30] is an improved filter focused in reducing computational complexity.

It consists of a few stages. In the first, the authors compute the orientation error from previous estimates
using the accelerometer and magnetometer measurements.

v
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2
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2
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2
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2
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75 (2.21)

et+1=�(at+1⇥v
�
qest,t

�
)+(1��)(mt+1⇥v

�
qest,t

�
) (2.22)

ei,t+1=ei,t+et+1�t (2.23)

The authors then compute the updated gyroscope measurements applying proportional-integral compen-
sation:

!t+1=!t+1+Kpet+1+Kiei,t+1 (2.24)

Following this, the authors use the method described previously to find the heading.

Fourati Filter

The Fourati filter [31] is effectively a complementary filter. It fuses the magnetometer heading at low fre-
quency regions, where it is expected to perform best, with the gyroscopic heading at high frequency regions.

2.3.3 Displacement Estimation

To find the change in position (i.e., displacement) of a user for any given timestamp, I use:
 

�x

�y

!
=

 
dcos✓
dsin✓

!
(2.25)

The heading (✓) can come from one of the methods described above, whilst there are a couple of methods
to calculate the distance moved in a timestep (d).

Kinematics

Firstly, you calculate the norm of the acceleration:

acct=
q
a2tx+a2ty+a2tz�g (2.26)

It is possible to isolate the x and y components of acceleration (in the correct plane) given a heading ✓:

at=

 
acctcos✓
acctsin✓

!
(2.27)
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Then, the velocity of the user is updated:
vt=vt-1+at�t (2.28)

and the position is:  
xt

yt

!
=

 
xt�1

yt�1

!
+vt-1+

1

2
at�t

2 (2.29)

Pedestrian Dead Reckoning (using Step Length Estimation)

In pedestrian dead reckoning (PDR), we identify every step that the user makes when walking. This is used
to identify the distance moved in each time step given the time taken to take a known length stride. This
has two parts to it.

The first part involves finding the timestamps for steps. Xu et al. [32] suggest the following simple method
for step detection for a smartphone IMU:

• Calculate the signal vector magnitude of the acceleration.

SVMt=
q
a2xt+a2yt+a2zt (2.30)

• Run this signal through a low-pass filter with a 3Hz cut-off frequency.

• Identify (and pair) all the peaks and valleys in the smoothed signal, using an empirically chosen
maximum and minimum amplitude.

Jimenez et al. [33] suggest a similar method (for a foot worn IMU) which calculates the local acceleration
variance to remove gravity and highlight motion before thresholding to find steps. They then filter using
the nature of foot swing. This is likely not useful for earables. There is no related work which completes
step detection using earables.

Finally, Lu et al. [6] present a similar method to Xu et al. [32] using peak detection combined with prominence
thresholding on a low-pass filtered signal of the norm of the acceleration.

Once we have found the timestamp for the steps, we find the distance moved per step. Methods for this
include:

• Lu et al. [6] propose using dead reckoning to find the step length:

D=K ·
ZZ

a(t)dtdt (2.31)

This assumes the velocity for each step starts at 0. The value of K is computed experimentally for each
user.

• Weinberg Model: The Weinberg model [34] defines the following formula:

Step Length=k· 4
p
amax�amin (2.32)

where k is measured for each individual. This can also be automatically defined:

– Ho et al. [35] define the following formula:

k=0.68�0.37⇥v̄step +0.15⇥v̄
2
step (2.33)

– Strozzi et al. [36] propose the following formula where � is a per sensor constant:

k=�⇥ 1
3
p
amax(i)

(2.34)
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• One can simply measure the length of a stride and assume that all strides are of the same length. This
can use an empirical value or be based on the user’s height [37].

Step Length=0.43·height (2.35)

Once you have the step time and step length, you can update the position at each timestamp.

For each step x occurring between timestamp i and j:

dt2i,...,j=
1

Step Lengthx

(2.36)

Then, for each timestamp:

St=

 
Stx

Sty

!
=St�1+

 
dtcos✓t
dtsin✓t

!
(2.37)

2.3.4 Estimation Theory

As part of tracking a user, two variables are fused to find the change in position: heading and distance
moved in each timestamp. There is uncertainty in both variables. Therefore, I consider three methods to
combine these variables probabilistically to find the most probable position.

Particle Filter

In a particle filter [38], one uses a large number of particles to simulate possible positions for the user. It
consists of two stages: sampling and re-sampling.

In sampling, for each particle, at each timestamp, you sample a heading and distance moved. I assume a
normal distribution, with an experimentally measured standard deviation. Therefore, these particles spread
out over time to represent the divergence in possible positions.

Occasionally, you re-sample these particles, based on the probability of each existing particle. The probability
of a particle could be based on an external (more reliable) measurement, like a GPS location. It could also
be based on real-world information about the position. For example, a particle that is inside a building for
an outdoor walker should have p=0. Finally, it could just be chosen to establish the particles at the centre
of mass of the particles, but with a lower variance. This is the method used to smooth measurements.

Kalman Filter

A Kalman filter [39] has a similar approach but does not require the simulation of particles, estimating the
positions with a normal distribution.

It has the two stages. In the prediction stage the Kalman filter produces an estimate of the current state
variables (position) along with the uncertainty. This is based on a hidden variable. For localisation, this
hidden state is the velocity.

One then uses the measurements of position given heading and distance moved at each timestamp (which
have some level of noise) to combine with these estimates using a weighted average. This is the update stage.
The weighting is based on the expected uncertainty of the prediction and measurement. This weighted
average is then used to predict the hidden variable (the velocity) and the uncertainty in this value.

Markov Chain Monte Carlo

MCMC [40] makes use of a Bayesian assumption to make predictions of what state an item is in based on
the state it was previously in and the transitional data. In this case, the hidden state is the location of the
user. You observe the heading and distance moved, which are the transition variables, training to optimise
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the transition probabilities between hidden states based on training data where the hidden state is known
(when there is ground truth GPS location data).

Then, I could use the Viterbi algorithm to step through a new sequence of heading and distance transitions
to parse the most probable path and identify the location at each time step.
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Chapter 3

Earable Prototype Design and
Implementation
To implement inertial navigation on an earable, we needed an earable containing an accelerometer, gyroscope
and magnetometer. However, no commercial available off-the-shelf (COTS) earables contained a magne-
tometer. This is because the magnetometer, as previously discussed, was highly inaccurate when placed
next to a speaker and Bluetooth circuitry. I wanted to test using a magnetometer with Ferlini et al.’s earable
magnetometer calibration [5] which could allow tracking on an earable to be possible. For my prototype,
I created a complete solution including a 3D printed enclosure, a custom PCB and software. This could act
as an effective platform for future earable research containing an IMU, BLE transceiver, temperature sensor,
pressure sensor, audio output and microphone.

3.1 Identifying Requirements

The requirements of the prototype were as follows:

• Mechanics

– The physical prototype should contain all required electronics.

– The prototype should allow for sufficient airflow to prevent overheating of the electronics (>45°C
based on Ungar et al. [41]).

– The prototype should be comfortable to wear.

• Electronics and Software

– The device should sample accelerometer, gyroscope and magnetometer data with a frequency
greater than 20 Hz.

– The device should be able to connect to an Apple iPhone over Bluetooth to transfer data.

– The device should have a battery life over five hours ensuring that it lasts for at least as long as
an Apple AirPods [42].

– The device should allow for audio output.

3.2 Electronics

3.2.1 Identifying Components

As part of the electronics I had a few decisions to make regarding components.

Microcontroller

I chose to use an Arduino Nano 33 BLE board to control the earables over other options such as using a cus-
tom chip and programming in C. Alternatively, I could have used a Raspberry Pi Zero, which offered greater
computation power. However, its consumption of 0.4W compared to 0.05W for the Nano was significant
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for a portable device. In using an Arduino board, I could utilise an open platform with a comparable level of
portability, power usage and computation power to existing mobile devices. It also meant that the prototype
could be used for future earable research beyond this thesis. The Nano also contained the required IMU
(a 9-axis LSM9DS1) and BLE communications circuitry.

Battery and Power Management

Existing wearable systems have used various strategies for power storage, from harvesting solar energy
[13] and friction [43] to varied battery technologies, such as Zinc Ion [44] and Lithium Ion [45]. I decided
to use Lithium Polymer batteries, as used by Kos et al. [46] and Goncalves et al. [47], as they offered a good
compromise of power density and cost. In particular, I chose a 250mAh (one cell) battery which was the
correct shape to fit the designed casing.

I used the PAM2401 to act as a DC-DC Boost Converter and regulator to provide a steady 5V to the Arduino
board and the MCP73831 to act as a charging regulator. These offered cost-effective solutions whilst being
possible to hand solder.

Audio Output

To output music from a speaker, I would require significant additional circuitry, including an audio driver
chip, SD card system and an Op-Amp. Hence, I decided that this should be left as an extension. Instead,
I concentrated on producing audible tones using pulse width modulation (PWM) and a resistor. I also chose
to include a digital switch, so that music could be switched between a connected iPhone and the Arduino.
To do this, I used the TS3A24159DGSR, which had a 0.2⌦ resistance between the input and output pins. Any
higher resistance could impact the iPhone audio quality.

3.2.2 Schematic Design

These components were combined by looking at the datasheets to find the correct auxiliary circuitry for
each chip, adding indicator LEDs for future debugging. Figure 3.1 shows this schematic, designed with
EagleCAD [48].

Fig. 3.1: Electronics Schematic
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3.2.3 Printed Circuit Board (PCB)

The PCB was designed using EagleCAD, with components manually placed and nets routed on a two-layer
PCB (43 x 18mm). I also placed a ground plane on the rear layer for safety reasons and to reduce the
complexity of the routing. The final design can be seen in Figure 3.2. The Arduino Nano was soldered on
top of the PCB. This could be done reversibly or conserving space (Figure 3.3).

Fig. 3.2: PCB Design showing each layer

Fig. 3.3: Methods of board connection to PCB

3.2.4 PCB Assembly

Figure 3.4 shows a picture of the delivered PCBs. They were assembled by hand with care taken for the
challenging QFN components. Figures 3.5 shows the complete soldered PCB.

In the future, reflow soldering could be used to ensure quicker and more reliable soldering.

To test the prototype, I considered each component in turn, using a multimeter to probe voltages. I verified
that charging was working by monitoring the idle current draw. The current draw went from around 25mA
to 500mA when plugged in, demonstrating the battery was charging. I demonstrated that the digital switch
was working using an LED initially and then using an earphone. Figure 3.6 shows the complete system.

3.3 Mechanics

I chose to produce an around-ear design since it was be easier to manufacture. I initially attempted to
emulate commercial off-the-shelf (COTS) around-ear headphones, but since they are injection molded using
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Fig. 3.4: Delivered PCB
Fig. 3.5: Soldered PCB

Fig. 3.6: Soldered full system

silicon, whilst my prototype was 3D printed, this proved challenging. The casing is designed using Autodesk
Fusion 360 [49] and printed with an Ultimaker 2 using Polylactic Acid. A better material for a 3D printed
earable would be the flexible Thermoplastic Polyurethane (TPU), however, this is challenging and expensive
to print in. I leave testing my design with a TPU printer as future work.

The first iteration (Figure 3.7 and Figure 3.8) demonstrated the design idea. The ear dimensions were based
on the author of the dissertation and Figure 3.9 demonstrates how it comfortably sat on the ears on the
dissertation author. An initial test of the electronics inside the prototype demonstrated that the design was
unnecessarily large. Additionally, with a larger battery, the weight balance of the device could mean that
the prototype would fall off the author’s ear.

In the second iteration (Figure 3.11 and Figure 3.10), I rotated the casing for the electronics to ensure the centre
of gravity was as close to the centre of the ear as possible. The general size of the device was also shrunk.

The final iteration (Figure 3.12 and Figure 3.13) increased the size of the device slightly. This was prompted
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Fig. 3.7: First casing design

Fig. 3.8: First printed casing

Fig. 3.9: First casing design
Fig. 3.10: Second casing printed

Fig. 3.11: Second casing design

by a change in the battery used, due to Brexit shipping delays. A larger 550mAh battery was acquired
and the larger casing was made to accommodate this battery. Figure 3.14 shows the final device with all
electronics inside. This was the device that I used for all the data collection.

3.4 Software

I aimed to use the prototype earables to collect data and transmit this to a connected iPhone for processing.
However, the power of the Nano (and additional sensors) means that future research could use this prototype
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Fig. 3.12: Third casing design

Fig. 3.13: Third casing printed

Fig. 3.14: Final model with electronics

as a powerful earable platform. Bluetooth Low-Energy (BLE) was used for data transmission from earable
to iPhone to minimise the power usage, since it uses less power than WiFi.

The earable software sampled IMU data (using a pre-written library [50]) at a specified rate and transmitted
this as a 36 byte package (4 bytes per sensor per axis) to the iPhone. I assigned both of the earables as
Bluetooth peripherals (see Figure 5.3), which the central, the iPhone application, connected to.

An iPhone application carried out data logging, as well as live tracking. More information on this is in
Section 5.2. I tested data transmission at various sampling rates, using different sensors, measuring the
current draw. With one earable connected, I found that the maximal transmission rate was 38.4Hz. With
both devices connected, this was limited to 20Hz.

The results in Table 3.1 and Figure 3.15 demonstrate that there was a linear increase in current draw when
increasing the frequency of updates. This difference is statistically significant1 for all changes other than 2.5Hz
to 5Hz. Changing from 5Hz to 40Hz reduced the battery life by two hours, a significant impact for earables.

The results for partial components of the IMU were unexpected. Individual parts never used less current

1using a paired t test with an ↵ value of 0.05
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Configuration Actual Frequency
/ Hz

Current Draw
/ mA

Estimated Battery
Life / hrs:mins

Completely Idle N/A 15.4 35:42
Looking for
connections N/A 23.1 23:48

2.5Hz All 2.48 19.5 28:12
5Hz Only Mag 4.96 19.6 28:03

Only Acc 4.96 19.6 28:03
Only Gyro 4.96 19.7 27:55
Mag + Acc 4.96 19.6 28:03
Acc + Gyro 4.96 19.6 28:03
Mag + Gyro 4.96 19.5 28:12
All 4.96 19.6 28:03

10Hz All 9.88 19.8 27:46
20Hz All 19.59 20.2 27:13
30Hz All 29.40 20.6 26:41
40Hz All 38.44 20.9 26:18

Table 3.1: Table showing power draw testing results. Measurements (using UT658B) taken as average of 15
measurements taken every minute of 15 minutes running.

Fig. 3.15: Current draw for prototypes running at various frequencies

than the entire IMU. I discovered that the open-source LSM9DS1 library did not work as the datasheet
instructed. When a part of the IMU was not initialised, it did not trigger the IMU ‘off’ signal. The LSM9DS1
datasheet indicates significant gains are possible if the IMU is controlled better.

In this chapter, I’ve created a new powerful, comfortable and portable earable prototype platform containing
all the required sensors for tracking, as well as for future earable research.
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Chapter 4

User Study
I performed a user study to collect IMU data from the earable prototypes under multiple situations. No
similar has been collected and released. I hope to release this data widely as soon as possible.

This raw IMU data could be used to enable comparison of different calibration, heading estimation and
displacement estimation algorithms discussed during Chapter 2. The experimental protocol is provided
here. I received permission from all required parties (ethics committee, Computer Laboratory Safety Officer
and college senior tutor) to conduct the experiment.

4.1 Experimental Protocol

I recruited six healthy subjects (3 male and 3 female) to complete the experiment. These were taken from
the author’s household bubble to allow an indoor test during the lockdown. The participants put on two
prototype earables, one on each ear and an iPhone was provided to them. This logged IMU data from the
earables and reference data from the iPhone as discussed in Section 5.2.1.

The experiment was split into two parts, involving data collection indoors and outdoors (Figure 4.1). This
was motivated by the idea that the level and composition of noise would differ as discussed in Section 2.3.1.
Additionally, the outdoor test provided a longer and more robust challenge. I could also capture ground
truth location from GPS.

Fig. 4.1: Subject completing user study

Indoors, the participants were asked to walk up and down a corridor (of length 8m) five times, taking approxi-
mately four minutes. Outdoors, participants walked around a 750m route (⇡11 minutes), visible in Figure 4.2.

In all tests, the users were asked to hold the iPhone in front of them to capture reference heading data. The
following data was recorded from users:

• 9-axis IMU data from each earable

• Reference heading from iPhone
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Fig. 4.2: Outdoor test route Fig. 4.3: User study subject using headband to hold prototype earables

• 9-axis raw IMU data from iPhone

• GPS longitude and latitude from iPhone

I also tested with two different noise profiles for both indoor and outdoor tests. The first involved the user not
listening to music and hence, had no earable magnetic interference other than background noise. The second
involved the user playing music on headphones. Therefore, each participant perform four different tests:

• Indoors without music

• Indoors with music

• Outdoors without music

• Outdoors with music

Due to the COVID-19 pandemic, safety protocols were strict to ensure adherence to government guidance.
For a list of precautions, see Appendix 8.1 which contains the full experimental application and consent form.

4.2 Issues encountered during user study

There were a few initial issues with the user study. The first problem was with attaching the earables to the
participants’ ears. As discussed in Section 3.3, the earables had been designed for the ear shape and size of
the dissertation author. This meant that it did not fit all the participants. It would have been possible to print
out specific designs for each participant, but this would have been time-consuming and costly. Therefore,
I used a headband to hold up the earables where necessary (Figure 4.3).

The earable was also particularly fiddly for those with long hair or wearing glasses. This would be an
important consideration for future mechanical designs. However, there was no quick fix and thus, care was
taken to ensure that the earables were comfortable for all participants, by placing the earables underneath
glasses and asking the participants to lift up their hair until the earables were put in place. No pain or
discomfort was reported by any participant.

Finally, I planned to power up the earables using the power connector once the prototype was attached to
the participants. This proved challenging as I had to ensure that no hair got into the power connector for
those with long hair. To fix this, I added a SPDT power switch.
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Chapter 5

Inertial Navigation
In this chapter, I discuss the software required to identify the best tracking framework for an earable. This
includes implementing algorithms discussed in Chapter 2 for sensor calibration, heading estimation and
displacement estimation with a Jupyter notebook. We discuss these implementations, motivating our choices
of algorithms to implement. The results from running the data collected in the user study through this offline
implementation are discussed in Chapter 6 and used to define the best calibration, heading estimation and
displacement estimation methods for tracking an earable.

In this chapter, we also propose a real-time implementation of tracking on earables, using a connected iPhone
application. This implementation would allow us to look at the required latency to obtain accurate tracking,
as well as looking at the CPU and memory usage of continually tracking on an earable and comparing this
to GPS tracking.

5.1 Offline INS implementation with Jupyter Notebook

The offline implementation used a Jupyter Notebook, allowing for simple and rapid experimentation and
use of open-source libraries. Initially, the raw IMU data from the user study was loaded as a CSV. The
logging process is discussed in Section 5.2.1. To process this data, I implemented the algorithms discussed
in Chapter 2 and in this section I explain my reasoning behind the chosen implementations.

5.1.1 Sensor Calibration

Accelerometer Calibration

For accelerometer calibration, I demonstrated that Sipos et al.’s and Frosio et al.’s error model [2, 21] were
equivalent, so I only implemented one, the simpler model by Sipos et al. I also implemented a simple offset
method as discussed in Section 2.3.1. Both of these required a stationary clip which was recorded for all
assembled earable prototypes.

Magnetometer Calibration

I used an existing Python implementation of Ferlini et al.’s calibration which used a least squares minimisation
using trust region reflective algorithm (TRR). I also implemented tilt compensation as described in Section
2.3.1. I chose not to test other techniques as I wanted a user transparent method. Manual calibration (such as
compass swinging techniques by Bowditch et al. [51]) are known to be error prone and cumbersome for users.

An important consideration when using Ferlini et al.’s calibration was when to capture calibration points
(using the phone as a reference heading) and how to use these points. To emulate a user lifting their phone
occasionally (leading to a phone-earable alignment), I captured potential calibration points every ten seconds.

The second aspect considered filtering points and when to discard old calibration points and complete a
full re-calibration. Filtering could ensure that points were taken at time such that the calibration offsets were
effective. I proposed filtering to ensure points was taken when the user was moving with constant velocity
(kak⇡g). This was motivated by a similar approach for calibration filtering by Shen et al [3]. As discussed in
the results, this proved effective, but required significant tuning, since a good threshold for ‘zero’ acceleration
proved user dependent.
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The importance of discarding old calibration points was demonstrated by Ferlini et al. in Figure 2.1. The bias
in magnetometer readings varies over time, due to variation in music and background magnetic properties.
I considered a number of discarding methodologies:

1. Never discarding points: Never discard any calibration points.

2. Rolling window of n points: Use n points for each calibration, where the n was empirically chosen.

3. Rolling window of s seconds: Discard old points after a period of time.

4. Discarding every full rotation: This method yielded consideration based on primary experimentation.
Discard all calibration points when the heading rolls over (359°�0° or 0°�359°).

Gyroscope Calibration

For gyroscope calibration, I considered using the method defined by Yang et al. [26]. However, I did not
have access to a turntable. Therefore, I instead simply complete an offset calibration with a stationary clip.

I also implemented Shen et al.’s gyroscope heading calibration [3]. The algorithm was as follows:

for point in data:
uncorrected heading = update heading(point.gyro data)
corrected heading = uncorrected heading − current gyro offset

if(norm(point.acc data) < n)):
current gyro offset = angle diff(uncorrected heading − magnetometer heading)

Algorithm 5.1: Shen et al. Heading Algorithm

where angle diff finds the difference between two angles (Algorithm 5.3).

5.1.2 Heading Estimation

For heading estimation, I implemented most of the methods described in Chapter 2. To get the heading from
the gyroscope I used the method described in Section 2.3.2, using an implementation from the AHRS library
[52]. This library was also used to implement both Madgwick and Fourati filters. Finally, I implemented
the heading from magnetometer and complementary filter as described in Chapter 2. I did not implement
the Mahony filter, since the Madgwick and Fourati filters were expected to perform more accurately, with
the Mahony filter prioritising efficiency over accuracy.

5.1.3 Offline Displacement Estimation

For displacement estimation, I implemented both the basic kinematics method and pedestrian dead reckoning
method described in Section 2.3.3. For step identification, I adapted Lu et al.’s method [6]. The algorithm was:

Pass norm of accelerometer data through a low pass filter with a 3Hz cut−off frequency.
Find peaks (local maxima) of this filtered data using SciPy.
Find peaks that have a

,! prominence above a certain empirically chosen value. The SciPy library was used to find peak prominences.

Algorithm 5.2: Lu et al. Step Detection Algorithm

I chose to implement this method since it was reasonably simple. Jimenez et al.’s method was specific for
foot IMUs and would not transfer well to earables. Additionally, I found that whilst peaks were easy to spot
in earable data (Figure 5.1), valleys were less distinct.

To find peaks, I used SciPy’s find peaks function [53] which finds maxima using a simple comparison of
neighbouring values. The prominences were found using the find prominences function. The histogram
in Figure 5.2 was used to empirically set a peak prominence threshold of 0.2.

In preliminary testing, I found that complex stride length estimation models worked but not consistently
across individuals. In particular, I experimented with using Weinberg’s model with Ho et al.’s formula for
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k. It appeared to require a scale factor tuning per user. Therefore, I estimated each user’s stride based on
their height, which performed much more consistently.

Fig. 5.1: Low-pass filtering of accelerometer signal Fig. 5.2: Histograms of peak prominences

5.1.4 Estimation Theory

Of the three methods considered in Section 2.3.4, I implemented a particle filter and Kalman filter, since they
were the simplest and most used methods in the sensor fusion community.

The particle filter was implemented manually, while, for the Kalman filter, the PyKalman library [54] was
used.

5.2 Online INS implementation with iPhone Application

I decided to create the real-time tracking system for an iPhone application, since this was the primary
smartphone owned by the author. Additionally, it allowed us to utilise some code written by Ferlini et al. [5]
from their magnetometer calibration work. The existing code connected to a single earable, logging phone
heading and magnetometer data.

5.2.1 Bluetooth Communications

Ferlini et al.’s code was extended to allow communications with two earables simultaneously. I used the
Core Bluetooth library to establish the iPhone as the central device (Figure 5.3). This then searched for earable
devices with a specific ID. The same ID was shared by both earables, which had the same ID but a different
device name (Left or Right). Once the device with matching ID was found, a connection was automatically
established. When a packet of IMU data arrived, it triggered an application interrupt to process the packet.

Fig. 5.3: BLE topology

As per Section 3.4, data was transmitted as a 36B packet from each earable. This was then split into nine
4B variables. For each packet, I log:

• Timestamp of packet arrival
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• Earable name: ‘left’ or ‘right’

• Earable IMU data: Magnetometer (x, y and z), Gyroscope (x, y and z) and Accelerometer (x, y and z)

• Phone IMU data: Magnetometer (x, y and z), Gyroscope (x, y and z) and Accelerometer (x, y and z)

• Phone Heading (found by fusing GPS and magnetometer)

• Phone GPS latitude and longitude

On a disconnection event, the log was processed and converted into a CSV file, saved on the iPhone. They
then completed the experiment, before disconnecting the earables by turning them off. The CSV could be
exported by emailing the file or plugging in the phone. I considered using a server to continuously upload
data, but this was unnecessarily time-consuming for minimal gain, since I intended to complete real-time
tracking on the iPhone, rather than on a server.

5.2.2 User Interface Designs

I designed four screens for the application. The first (Figure 5.4) was a home screen. This was designed
according to Gestalt’s Laws [55]. Foreground and background was made clear using colour. The similar
buttons were symmetrically grouped to abide by continuity, symmetry and similarity laws.

Fig. 5.4: Main screen Fig. 5.5: Configuration screen

Clicking the ‘Configuration’ button took the user to a screen (Figure 5.5), where they could set the config-
uration of the application. The first box asked for the user’s height, which was used during pedestrian
dead reckoning. The screen also offered several heading estimation options and two different displacement
estimation methods. The latter are both discussed in Section 5.1.3. Meanwhile, the heading estimation
options were a subset of those discussed in the offline implementation. I implemented the gyroscope-only,
magnetometer-only, Madgwick filter and complementary filter strategies. I intended the option selection
to use robust and reliable drop-down menus. However, this was not a native feature in iOS and requires
significant work to implement. Thus, I used a text input field.

Clicking the ‘Audio Feedback’ button took the user to a new screen (Figure 5.6). This had two main parts.
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The top half showed the calibrated heading, the heading aim and two buttons to start and stop the audio
feedback. Section 5.2.4 discusses what happens on this screen.

At the bottom of the screen, the connected earables were displayed. The timeline of connecting devices (and
screens for these parts) is shown in Figure 5.8.

Fig. 5.6: Audio feedback screen Fig. 5.7: INS screen

Fig. 5.8: Timeline of connections

Finally, the inertial navigation screen (Figure 5.7) also had two halves. The bottom half was the same as
that in the audio feedback screen, and followed the same timeline. The upper half contained the reference
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heading, calibrated heading and the calculated position. These were found using the methods chosen by the
user in the configuration screen. Additionally, a ‘Calibrate’ button allowed users to indicate they are looking
at the screen, to calibrate the magnetometer.

5.2.3 Online Heading Estimation

For heading estimation, I implemented a few of the methods described in Section 5.1.2. The choices of
methods was based on primary offline testing discussed in Chapter 6.

For accelerometer calibration, I implemented Sipos et al.’s calibration model [2], copying across the calculated
correction parameters. For magnetometer calibration, I used a filtered approach to generate a calibration
point once the user pressed the calibrate button as long as the device was static, throwing away points after
a rolling points window of ten points. This was shown in my initial testing to be a very effective and reliable
method. For least squares minimisation, I used an existing online implementation [56].

For the gyroscope-only heading estimation method and Madgwick filter, I manually converted the offline
Python code into Swift. Finally, for the complementary filter, I chose to set ↵=0.8� t

400 , based on preliminary
testing.

5.2.4 Audio Feedback

To demonstrate an advantage of earables in tracking in addition to potentially higher accuracy, I created a
demonstration application. Here, I used a calibrated heading from one of the methods discussed above to
find the user’s attention heading. Given a target heading, the application outputs a tone corresponding to
how close a user was looking to this target. This could be useful in settings such as a complicated intersection
to help identify which road to walk down.

I outputted the audio directly from a phone, rather than passing audio via the Arduino earable prototypes.
This method was much simpler, not requiring two directional traffic between the iPhone and earables. I
defined the frequency of the tone as:

f=2750(
180�diff

180
)+250 (5.1)

where diff is the difference between current calibrated heading and the heading aim:
def diff(a, b):

if (a > b):
return min(a−b, 360+b−a)

else:
return min(b−a, 360+a−b)

Algorithm 5.3: Angle Difference Algorithm

This mapped the difference to a frequency between 250 and 2750Hz. These tones empirically sounded clear,
audible and comfortable.

5.2.5 Online Displacement Estimation

I implemented both the kinematics method and pedestrian dead reckoning methods. The kinematics method
was simple to convert to real time, as it had no time reliance. Given the state and the current data, I could
find the next predicted position.

The pedestrian dead reckoning method was a bit more challenging to convert into real-time. It required
finding peaks in the real-time accelerometer signal. Therefore, I chose to add a delay of two seconds,
empirically chosen to allow us to reliably find peaks whilst minimising the delay. To complete low-pass
filtering, I manually implemented a first-order filter using the following formula:

output value=
1

3
input value+

2

3
previous value (5.2)
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I chose to use a first-order filter due to its simplicity and efficacy. Figure 5.9 demonstrates at a glance that a first-
order filter does nearly as well as a fifth-order filter in helping to identify peaks in the norm of the acceleration.

Fig. 5.9: Output of low-pass filters

To find peaks, I utilised a smoothed z-score algorithm used by Bernardi et al. [57] and implemented in Swift
online [58].

In this chapter, I demonstrated how to capture raw data transmitted by the prototype earables. This data could
either be processed offline using the Jupyter notebooks with a wider range of possible sensor calibration, head-
ing estimation and displacement estimation methods. The offline software is used in Chapter 6 to evaluate
the implemented methods using data collected from the user study. The best methods are combined to define
a new framework for tracking on an earable. The transmitted data can also be processed to track the heading
of a user in real-time and position of a user with a latency of two seconds, using a new iPhone application.
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Chapter 6

Results and Discussion
In this chapter, I discuss the various calibration and tracking algorithms implemented. These were evaluated
using the data collected in the user study, with metrics described in Section 6.1. Throughout, I completed
significance testing using a paired t test comparing results for the same user. The null hypothesis is that the
two compared systems are the same, and I used an ↵ value of 0.05.

I firstly look at the impact of data frequency on the heading and displacement error, finding that the higher
the frequency, the lower the errors. This appears to be a linear relationship until 10Hz. I then consider the
effect of sensor calibration, finding that Shen et al.’s gyroscope and Ferlini et al.’s magnetometer calibra-
tion perform the best, whilst Sipos et al.’s calibration and an offset calibration perform the same. I also
propose a new calibration point strategy for Ferlini et al.’s method, combining the best performing tested
strategies. Following this, I look at heading estimation and displacement estimation methods, finding that
magnetometer-only methods on average perform the best but with a lower reliability. Pedestrian dead
reckoning meanwhile, outperforms kinematics methods by 93.3%, with a significant velocity drift noted in
the kinematics method. Finally, I investigate the impact of the environment, demonstrating that music does
not significantly affect the accuracy, whilst the heading error is significantly reduced in the longer, outdoor
test. These results allow me to define the most effective tracking strategy for one earable.

I also complete two other tests, showing that earable tracking outperforms inertial iPhone raw data track-
ing by over 35.6%, whilst also showing that the real-time tracking application has a low battery impact
maintaining a reasonably good accuracy, performing 12% worse than the offline implementation.

6.1 Relevant Metrics

Each variable was tested in turn in this section against a set of tests. These included a variety of different
heading estimation methods. The choice of tests was based on preliminary testing and is defined as follows.

• Physical Environment and Noise Profile: I tested the system indoor (without music).

• Accelerometer Calibration: I opted for Sipos et al.’s calibration.

• Magnetometer Calibration: I implemented Ferlini et al.’s magnetometer calibration with the following
calibration point strategies:

– Never discarding calibration points

– Rolling window of ten calibration points

– Rolling window of a minute

– Discarding every full rotation

• Gyroscope Calibration: I leveraged offset calibration.

• Heading Estimation Methods: I utilised the magnetometer-only and gyroscope-only method as well
as a complimentary filter with an empirical function of ↵=0.8� t

400 . The value of 400 was chosen
based on preliminary testing and I consider the impact of multiple values in Section 6.4. I also consider
the Madgwick and Fourati filters.
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• Displacement Estimation Methods: I used pedestrian dead reckoning.

For each heading estimation method, I calculated the difference between the predicted heading and the
ground truth reference heading. These were averaged across all the study volunteers. An example of the
headings from all methods is shown in Figure 6.1.

Fig. 6.1: Example of heading estimation

I also looked at the drift in tracking position over time. Indoors, there was no GPS to provide ground truth
position. Therefore, I the test to start and end at the same point. Hence, I could find the drift as the normal
of the final position divided by the testing time. An example path taken is shown for an indoor test is shown
in Figure 6.2.

Fig. 6.2: Example of displacement estimation

6.2 Data Frequency

I considered the impact of earable data frequency on the heading accuracy and tracking drift. I found the
data for different frequencies by discarding data. This was not necessarily equivalent to recording data
slower, since sensors provide more accurate, better smoothed data when recording slower. Thus, it is possible
that in real life, recording slower could perform better than the results showed.

The results in Table 6.1 demonstrate that increasing the frequency of data increases all heading accuracies
and reduces the drift. Figure 6.5 demonstrates this trend appears linear. These differences were statistically
significant for 2.5Hz to 5Hz (16.2%) and 5Hz to 10Hz (19.6%). However, the difference between 10Hz and
20Hz was not statistically significant.

In general, the standard deviations are quite high. This standard deviation arose from different users and not
different methods. Therefore, the paired t test could still show statistically significant differences in average
heading and displacements. The high standard deviations of magnetometer-only heading errors arose from
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2.5 5
Heading Error
/ °

Displacement Error
/ ms

�1
Heading Error
/ °

Displacement Error
/ ms

�1

Frequency / Hz
Average Standard

Deviation Average Standard
Deviation Average Standard

Deviation Average Standard
Deviation

Never discarding
points 30.1 26.6 0.3030 0.01007 30.4 25.1 0.1673 0.1000

Rolling window of
ten points 23.1 19.0 0.3010 0.01020 20.2 16.4 0.1671 0.0098

Rolling window of
a minute 27.4 22.3 0.3028 0.01010 22.4 18.3 0.1673 0.0100Magnetometer

Only Discarding every
rotation 32.0 28.6 0.3030 0.00983 23.3 22.3 0.1675 0.0099

Gyroscope only 29.6 18.6 0.3019 0.00892 26.0 19.8 0.1674 0.0101
Madgwick Filter 32.0 21.6 0.3014 0.00934 24.0 20.0 0.1675 0.0101
Fourati Filter 32.8 21.7 0.3017 0.00938 27.0 19.8 0.1677 0.0100
Complementary Filter 26.4 18.1 0.3018 0.00924 22.6 17.5 0.1673 0.0100

10 20
Heading Error
/ °

Displacement Error
/ ms

�1
Heading Error
/ °

Displacement Error
/ ms

�1

Frequency / Hz
Average Standard

Deviation Average Standard
Deviation Average Standard

Deviation Average Standard
Deviation

Never discarding
points 29.5 24.1 0.1084 0.00407 24.3 19.8 0.4370 0.1780

Rolling window of
ten points 14.2 12.0 0.1084 0.00409 15.1 15.7 0.1330 0.0354

Rolling window of
a minute 15.7 11.8 0.1083 0.00412 19.4 18.6 0.2310 0.1010Magnetometer

Only Discarding every
rotation 17.2 17.2 0.1082 0.00395 15.9 15.9 0.2510 0.0686

Gyroscope only 21.4 15.5 0.1080 0.00416 24.5 24.0 0.1950 0.0290
Madgwick Filter 19.7 16.1 0.1081 0.00423 18.8 14.3 0.2170 0.0353
Fourati Filter 21.9 16.2 0.1080 0.00411 21.8 15.9 0.1800 0.0265
Complementary Filter 17.8 15.1 0.1081 0.00415 21.9 17.7 0.2450 0.0721

Table 6.1: Results comparing heading error and displacement error for different data frequencies

Fig. 6.3: Good magnetometer calibration Fig. 6.4: Bad magnetometer calibration

‘failed’ calibrations. 5% of the calibrations failed (Figures 6.3 and Figure 6.4), but this significantly increased
the standard deviation. The standard deviation for successful calibrations was under 15°. For the rest of
the results, I chose to use 20Hz as the sampling frequency which performed the joint best.

6.3 Calibration Methods

In this section, I tested the various implemented calibration methods for accelerometers, gyroscopes and mag-
netometers. The best methods can then be combined to define a new calibration framework for earable IMUs.
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Fig. 6.5: Line graph showing heading error vs device frequency

6.3.1 Accelerometer Calibration

I compared the Sipos et al., offset calibration and no calibration.

No Calibration Offset Calibration
Heading Error
/ °

Displacement Error
/ ms

�1
Heading Error
/ °

Displacement Error
/ ms

�1

Accelerometer Calibration Method
Average Standard

Deviation Average Standard
Deviation Average Standard

Deviation Average Standard
Deviation

Never discarding
points 24.3 19.8 0.437 0.178 24.3 19.8 0.437 0.178

Rolling window
of ten points 15.1 15.7 0.234 0.0354 15.1 15.7 0.133 0.0354

Rolling window
of a minute 19.4 18.6 0.488 0.101 19.4 18.6 0.231 0.101Magnetometer

Only Discarding every
rotation 15.9 16 0.343 0.0686 15.9 16 0.251 0.0686

Gyroscope only 24.5 24.4 0.302 0.117 24.5 24.1 0.195 0.029
Madgwick Filter 26.7 19.7 0.431 0.105 19.5 15.7 0.228 0.0423
Fourati Filter 26.5 17.9 0.267 0.1 21.9 16 0.181 0.0275
Complementary Filter 25.8 19.2 0.328 0.105 22.7 18.5 0.247 0.0767

Sipos et al. Calibration
Heading Error
/ °

Displacement Error
/ ms

�1

Average Standard
Deviation Average Standard

Deviation
24.3 19.8 0.437 0.178
15.1 15.7 0.133 0.0354
19.4 18.6 0.231 0.101
15.9 15.9 0.251 0.0686
24.5 24 0.195 0.029
18.8 14.3 0.217 0.0353
21.8 15.9 0.18 0.0265
21.9 17.7 0.245 0.0721

Table 6.2: Results comparing heading error and displacement error for different accelerometer calibration methods

The results in Table 6.2 demonstrate a few things. The offset calibration (which uses only a bias and no scale
factor) performed significantly better (p=0.004) than no calibration in terms of heading and displacement error.
There was however, no statistically significant difference (p=0.23) between the offset calibration and Sipos et
al.’s calibration. This suggests that the scale factor and non-orthogonality error was not particularly significant
for the accelerometer. Secondly, whilst the clearest improvements are in the heading error for methods which
use the accelerometer, there was also a statistically significant change in displacement error between no
calibration and either calibration. This arose from the fact that the accelerometer was used for step detection.
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6.3.2 Magnetometer Calibration

Here, I compare Ferlini et al.’s calibration with no calibration at all.

Ferlini et al. Calibration No Magnetometer Calibration
Heading Error
/ °

Displacement Error
/ ms

�1
Heading Error
/ °

Displacement Error
/ ms

�1

Magnetometer Calibration
Average Standard

Deviation Average Standard
Deviation Average Standard

Deviation Average Standard
Deviation

Never discarding
points 24.3 19.8 0.437 0.178

Rolling window of
ten points 15.1 15.7 0.133 0.0354

Rolling window of
a minute 19.4 18.6 0.231 0.101Magnetometer

Only Discarding every
rotation 15.9 15.9 0.251 0.0686

30.5 19.8 0.581 0.0567

Gyroscope only 24.5 24 0.195 0.029 24.5 24 0.195 0.029
Madgwick Filter 18.8 14.3 0.217 0.0353 19.5 15.7 0.227 0.0417
Fourati Filter 21.8 15.9 0.18 0.0265 21.9 16 0.183 0.0283
Complementary Filter 21.9 17.7 0.245 0.0721 22.8 18.6 0.248 0.0205

Table 6.3: Results comparing heading error and displacement error for different magnetometer calibration methods

Table 6.3 shows that for the Magnetometer Only method, the Ferlini et al. calibration offered a significant
improvement (38%). This improvement did not carry through to the Madgwick Filter and Fourati Filters.
I believe this is due to their filters most significantly use the accelerometer and gyroscope for heading
estimation, with little use of the magnetometer.

Of the strategies for choosing calibration points, the rolling window of ten points significantly outperformed
the other strategies. I note that discarding points every rotation also performed very well. These two
approaches could be combined to produce a rolling window which refreshes at every rotation.

Finally, I considered the impact of the filtering methods discussed in Section 5.1.1. This suggested excluding
points if the user encounters significant acceleration. This was tested for the never discarding points method,
offering a statistically significant improvement of 7%. However, it required significant tuning (per user) to
select an accelerometer threshold. Too high a threshold would mean too few points, and often only outliers
could be used for calibration, leading to failed calibrations. Too low a threshold meant that the impact of
the filtering was minimal. With an effective tuning, however, filtering could be added to the best calibration
point strategy discussed. In particular, I hypothesise that introducing smoothing and a threshold relative
to peaks would be an effective automatic tuning method.

6.3.3 Gyroscope Calibration

I compared the offset calibration and Shen et al.’s calibration with no calibration.

Fig. 6.6: Bar chart showing the impact of various gyroscope calibration methods on average heading accuracy
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No Calibration Offset Calibration
Heading Error
/ °

Displacement Error
/ ms

�1
Heading Error
/ °

Displacement Error
/ ms

�1

Gyroscope Calibration
Average Standard

Deviation Average Standard
Deviation Average Standard

Deviation Average Standard
Deviation

Gyroscope only 26.7 17.8 0.177 0.0429 24.5 24.0 0.195 0.029
Madgwick Filter 21.8 16.7 0.207 0.0408 18.8 14.3 0.217 0.0353
Fourati Filter 25.6 17.3 0.162 0.0381 21.8 15.9 0.18 0.0265
Complementary Filter 24.1 19.9 0.236 0.0521 21.9 21.7 0.245 0.0721

Shen et al. Calibration
Heading Error
/ °

Displacement Error
/ ms

�1

Average Standard
Deviation Average Standard

Deviation
19.4 19.7 0.158 0.0477
19.5 15.7 0.227 0.0417
21.9 16 0.18 0.0277
18.8 20.4 0.136 0.0507

Table 6.4: Results comparing heading error and displacement error for different gyroscope calibration methods

The results (Table 6.4) were as expected, with the offset calibration performing better than no calibration
(by 13%) and the Shen et al. calibration performing better than offline calibration (by 7%).

6.4 Heading Estimation Method

Using the best earable calibration framework defined above, I compared the various heading estimation
algorithms.

Heading Error
/ °

Displacement Error
/ ms

�1

Average Standard
Deviation Average Standard

Deviation
Never discarding
points 24.3 19.8 0.437 0.179

Rolling window
of n points 15.1 15.7 0.133 0.0354

Rolling window
of n seconds 19.4 18.6 0.231 0.101Magnetometer

Only Discarding every
rotation 15.9 15.9 0.251 0.0686

Gyroscope only 24.5 24.0 0.195 0.0290
Madgwick Filter 18.8 14.3 0.180 0.0265
Fourati Filter 21.9 16 0.181 0.0275

0.25 15.8 16.5 0.172 0.0314
0.5 18.9 19 0.202 0.0386Complementary

Filter 0.75 21.2 17.9 0.193 0.0268

Table 6.5: Results comparing heading error for different heading estimation methods

Table 6.1 demonstrates that the magnetometer methods had the potential to perform the best, but was less
reliable, with the highest relative standard deviation. It was continuously calibrated directly against the
reference heading, with minimal drift, therefore the magnetometer method performed very well. I do note
however, that with Shen et al.’s calibration, methods that use a gyroscope performed comparably. Shen et
al.’s method seemed to use the low frequency magnetometer accuracy (especially when well calibrated) and
high frequency gyroscope accuracy. In particular, it removed the gyroscopic drift exhibited by the Madgwick
and Fourati filters. Figure 6.7, which came from an outdoor test, demonstrates that Fourati exhibit a lower
drift than Madgwick filters, however, on indoor tests, the Madgwick filter consistently outperformed the
Fourati filter. This suggests that the method for the Fourati filter performs better in the long term, but less
well in the short term.

For the magnetometer methods, the variance in results arose from the occasional failed calibration. I can
conclude that the best method for a short, indoor test, is either the magnetometer only method (with the
new strategy defined), or Shen et al.’s complementary filter method.
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Fig. 6.7: Graph of heading from an outdoor no music test which demonstrates the gyroscopic drift in the Madgwick
and Fourati filters

6.5 Displacement Estimation Method

I compared the kinematics method and pedestrian dead reckoning.

Kinematics Step Length Estimation
Displacement Error
/ ms

�1
Displacement Error
/ ms

�1

Average Standard
Deviation Average Standard

Deviation
Magnetometer
Only

Never discarding
points 6.16 3.18 0.437 0.178

Rolling window
of ten points 2.32 0.769 0.133 0.0354

Rolling window
of a minute 5.47 1.3 0.231 0.101

Discarding every
rotation 2.49 1.12 0.251 0.0686

Gyroscope only 2.69 1.11 0.195 0.0290
Madgwick Filter 3.66 1.55 0.217 0.0353
Fourati Filter 2.42 1.14 0.180 0.0265
Complementary Filter 2.63 0.538 0.245 0.0721

Table 6.6: Results comparing displacement error for different displacement estimation methods

Table 6.6 shows that PDR significantly outperforms the kinematics-based method. By looking at a path
generated by the method (Figure 6.8), we can identify that the kinematics method exhibits a significant
velocity error that builds up over time.

Figure 6.9 shows that the method observed test subjects reaching 4ms
�1 (⇡ 12km/h) which is far higher

than could be true. It is possible this could be fixed with further calibration.

6.6 Test Environment

Firstly, I looked at the impact of audio playback on the results (Table 6.7). I found there was no statistically
significant change in the heading errors (p=0.29). Interestingly, whilst there was no significant difference
in displacements for any of the magnetometer methods, there was one for the gyroscopic methods. This
was highly unexpected, since the magnetic noise of music and speakers should only affect magnetometer
methods. Therefore, I hypothesise that the results arose from user actions when listening to music. There
was likely more noise, with users looking to the sides more. This is a possible issue with the tracking method.
The user’s head must be facing in the direction of motion for tracking to work. This does not mean that the
user cannot look away, as they can move their eyes without moving their head. However, when looking
around, users generally move their heads a little as well.

The results from the outdoor tests showed the algorithms having a lower heading error, but a slightly higher
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Fig. 6.8: Path comparison between kinematics method
and pedestrian dead reckoning for indoor no music test

Fig. 6.9: Histograms demonstrating the speed of
movement in kinematics method

Inside No Music Inside Music
Heading Error
/ °

Displacement Error
/ ms

�1
Heading Error
/ °

Displacement Error
/ ms

�1

Average Standard
Deviation Average Standard

Deviation Average Standard
Deviation Average Standard

Deviation
Never discarding
points 24.3 19.8 0.437 0.1790 24.8 19.0 0.371 0.1770

Rolling window
of ten points 15.1 15.6 0.133 0.0354 17.1 18.0 0.145 0.0680

Rolling window
of a minute 19.4 18.6 0.231 0.1010 20.0 17.9 0.180 0.0800Magnetometer

Only Discarding every
rotation 15.9 15.9 0.251 0.0686 17.0 16.8 0.214 0.0757

Gyroscope only 24.5 24.0 0.195 0.0290 21.4 19.0 0.190 0.0703
Madgwick Filter 18.8 14.3 0.217 0.0353 22.4 20.1 0.286 0.0500
Fourati Filter 21.8 15.9 0.180 0.0265 20.5 22.0 0.205 0.0621
Complementary Filter 21.9 17.7 0.245 0.0721 20.7 23.1 0.205 0.0661

Outside No Music Outside Music
Heading Error
/ °

Displacement Error
/ ms

�1
Heading Error
/°

Displacement Error
/ ms

�1

Average Standard
Deviation Average Standard

Deviation Average Standard
Deviation Average Standard

Deviation
Never discarding
points 9.6 7.0 0.29 0.0900 9.93 9.36 0.283 0.0672

Rolling window
of ten points 15.1 17.2 0.172 0.0505 13.6 11.4 0.192 0.0577

Rolling window
of a minute 13.0 11.8 0.216 0.110 12.6 13.0 0.208 0.0602Magnetometer

Only Discarding every
rotation 17.6 16.9 0.231 0.118 10.9 9.48 0.292 0.114

Gyroscope only 37.6 19.4 0.44 0.154 36.9 18.1 0.528 0.149
Madgwick Filter 29.7 17.9 0.49 0.168 22.4 15.8 0.438 0.111
Fourati Filter 20.2 11.6 0.48 0.106 20.7 13.6 0.382 0.103
Complementary Filter 17.9 12.8 0.30 0.108 18.9 15.1 0.333 0.0960

Table 6.7: Results comparing heading error and displacement error for different environments and noise profiles

displacement error. The lower heading error came from the simpler testing situation. Whilst every ⇡10
seconds there was a 180° turn in the indoor test, this did not exist in the outdoor test. This led to far fewer
failed magnetometer calibrations. For the higher displacement error, I suspect that this came from a higher
accelerometer noise that impacted the accuracy of step detection.

Outside, there was not a clear correlation between heading estimation accuracy and displacement error. For
example, the no-splitting magnetometer-only heading method has the lowest heading error. This did not
correspond to the lowest displacement error. This suggests that there was a level of over-calibration, where
the iPhone did not necessarily exactly point in the direction of motion, whilst the earables did. The methods
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Fig. 6.10: Example of outdoor tracking path

with occasional discarding have a reduced over-calibration effect.

For gyroscopic methods, the length of the test showed the issues with gyroscopic drift. Sometimes, the drift
was not too significant (Figure 6.12), whilst sometimes it was particularly bad (Figure 6.11). It appeared that
the gyroscope drift may be user dependent and could be fixed by a per-user calibration. Using a longer
stationary clip, it might be possible to characterise this per-user drift and correct against it whilst walking.
As seen in Figure 6.8, the Fourati filter dealt with the gyroscopic drift far better than the Madgwick filter.
Shen et al.’s method dealt with this drift effectively by calibrating the gyroscope with the magnetometer.

Fig. 6.11: An example of significant gyroscopic drift in
an outdoor test

Fig. 6.12: An example of minimal gyroscopic drift in
an outdoor test

6.7 Impact of Particle and Kalman Filters

Original Particle Filter Kalman Filter
Heading Error
/ °

Displacement Error
/ ms

�1
Heading Error
/ °

Displacement Error
/ ms

�1
Heading Error
/ °

Displacement Error
/ ms

�1

Average Standard
Deviation Average Standard

Deviation Average Standard
Deviation Average Standard

Deviation Average Standard
Deviation Average Standard

Deviation
Never discarding
points 24.3 19.8 0.437 0.178 25.6 20.7 0.428 0.183 25.6 20.7 0.427 0.184

Rolling window
of ten points 15.1 15.7 0.133 0.0354 16.3 16.9 0.157 0.083 16.3 16.9 0.158 0.083

Rolling window
of a minute 19.4 18.6 0.231 0.101 20.8 18.5 0.238 0.101 20.8 18.5 0.25 0.01Magnetometer

Only Discarding every
rotation 15.9 15.9 0.251 0.0686 15.8 15.5 0.148 0.0603 15.8 15.5 0.154 0.0615

Gyroscope only 24.5 24.0 0.195 0.0290 25.9 21.7 0.194 0.0202 25.9 21.7 0.194 0.0217
Madgwick Filter 18.8 14.3 0.217 0.0353 19.5 15.4 0.226 0.0438 19.5 15.4 0.228 0.0439
Fourati Filter 21.8 15.9 0.180 0.0265 21.9 15.9 0.179 0.0287 21.9 15.9 0.18 0.0286
Complementary Filter 21.9 17.7 0.245 0.0721 18.9 14.6 0.17 0.0396 18.9 14.7 0.169 0.0391

Table 6.8: Particle and Kalman filter results for heading error and displacement error

Table 6.8 shows that there was no gain made by the particle or Kalman filter over assuming both measure-
ments were equally accurate. This suggests that the inaccuracy in tracking arises from the calculated heading
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and displacement, not their fusion. They did however, produce an interesting measure of the uncertainty
of the position at any given point (Figure 6.13). This measurement of uncertainty could be used to help to
identify when to collect a GPS ground truth position measurement. It could also be fed into a calibration
system, using a ‘more certain’ measurement to calibrate a ‘less certain’ measurement for example.

Fig. 6.13: An example of uncertainty visualised through a particle filter

6.8 Evaluating Online Inertial Navigation

I evaluated the online inertial navigation in two ways. Firstly, I looked at the accuracy of the system for the
indoor tests and then looked at the systems aspect, looking at the CPU and memory usage on the iPhone.

6.8.1 Accuracy

To evaluate the accuracy of the online solution which was written after the data collection, I wrote code to
allow the iPhone application to process previously collected data in simulated real time.

Pedestrian Dead Reckoning
Final Displacement Error / ms

�1

Offline
(Jupyter Notebook)

Online
(iPhone)

Magnetometer only 0.133 0.181
Gyroscope only 0.251 0.243
Madgwick Filter 0.217 0.356
Complementary Filter 0.187 0.213

Table 6.9: iPhone Accuracy vs Jupyter Notebooks for INS

Table 6.9 demonstrates that the system performed 18% worse than the equivalent offline system. The majority
of this comes from the Madgwick filter, which likely has an implementation error. If I exclude the Madgwick
filter, the difference was 12%. The results could likely be improved with more time spent tuning the many
empirical thresholds in the application.

6.8.2 System Performance

To test the system performance, I ran the iPhone application, completing inertial navigation with two earables
producing real-life data. Using the Xcode debugging panel, I took a CPU and memory usage measurement
every minute for ten minutes of testing. During this process, the CPU usage stayed constant at 27%. The
memory usage started at 41.7MB, then climbing 1MB every 190 seconds. This was described as ‘low’ battery
impact according to Xcode. I compared this to the usage when running Google Maps, which used 57% of
CPU usage and 230MB of memory, described as ‘high’ battery impact. This means that we can track the
position of a user with inertial navigation for a day without consuming excess phone battery on the phone
or draining the earables batteries.
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6.9 Comparison with iPhone tracking

Finally, I compares the results of tracking between earables and an iPhone. Table 6.10 show how tracking on a
smartphone is more challenging. The heading accuracy was very low (with the best heading estimation algo-
rithm achieving an error just under 30°). This arose from significantly more noise for the magnetometer and
gyroscope (Figure 6.15). This explains why the iPhone also includes GPS to find the phone’s ‘true heading’.
Hence, I can conclude that tracking using raw IMU data performed better on an earable than on a smartphone.
However, more work should be carried out to investigate the source of the higher iPhone tracking error.

Heading Error / ° Displacement Error / ms
�1

Reference Heading 0 0.0439
Magnetometer Only:
Rolling window of ten points 29.5 0.205

Gyroscope Only 41.7 0.45
Madgwick Filter 32.7 0.309
Fourati Filter 31.7 0.401

Table 6.10: Results for tracking algorithms on iPhone raw IMU data

Fig. 6.14: Comparison of accelerometer readings of
phone and earable

Fig. 6.15: Comparison between gyro readings of phone
and earable

6.10 Initial Conclusions

In this chapter, I defined a best method for tracking a user from a single earable. I showed that this tracking
performed much better than tracking on an iPhone, whilst consuming minimal iPhone CPU time, 53%
less than GPS navigation. The best tracking firstly consists of a novel earable IMU calibration framework
consisting of using:

• Accelerometer Calibration: Sipos et al. and offset calibration performed the same so either could be
used.

• Gyroscope Calibration: Shen et al. calibration should be used.

• Magnetometer Calibration: Ferlini et al. calibration with the following method to choose when to
collect and discard points: Reference points should be collected if the user is stationary. Points should
be discarded using either a rolling window of ten points or when a full rotation has occurred.

For heading estimation, magnetometer-only methods performed best but were not the most reliable. There-
fore, a method consisting of a complimentary filter of both a magnetometer heading and Madgwick filter
would perform the best. Finally, for displacement estimation, pedestrian dead reckoning should be used.

These methods were used to produce the first end-to-end tracking system for an earable, with a heading
error of under 10° for an outdoor test and tracking drift of under 0.15ms

�1. In the next chapter, we propose
novel methods to combine data from both earables to further reduce the tracking drift and power usage
of the complete system.
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Chapter 7

Experiments with Sensor Fusion
Throughout this dissertation, I have applied existing tracking algorithms to a prototype earable. In this
chapter, I consider one of the major advantages of earables - two independent sets of measurements.

I propose a number of novel methods to combine all data to maximise the accuracy of tracking. I find the best
strategy to combine the headings of each earable using a particle filter. This leads to an average reduction
in drift of 27%.

I also devise methods to minimise current draw, whilst maintaining the accuracy improvement of fusing
the earables. The first uses one IMU component from one earable and two from the other. This does not
yield particularly good results. The second suggests mixing the frequency of updates from each earable. I
demonstrate that it it possible to drop the frequency of one earable to 5Hz for indoor tests whilst still offering
an improvement over using a single earable.

Finally, I theorise a new method of accurate (<15m error) tracking on a smartphone utilising earables to
reduce the number of required GPS updates. This yields a 65% reduction in power usage on the iPhone.

7.1 Experiment 1: Combining all data from two earables

In this experiment, I attempted to maximise the accuracy of the results by using all data from both earables.
I considered a number of methods to do this:

• A: For each data point, average the raw IMU data coming from each earbud.

• B: Use each data point from either earable as if from the same earable. This doubles the data rate from
20Hz to 40Hz.

• C: For each earable, independently calibrate and find the heading. Then average the heading of the
two earables.

• D: For each earable, independently calibrate and find the heading. Then use a particle filter to fuse
the headings.

• E: For each earable, independently find the predicted position. Then average these positions.

• F: For each earable, independently find the predicted position. Then use a particle filter to fuse these
positions.

As opposed to Chapter 6, where I tested with a large number of possible algorithms, I chose to test the
system on the best of the heading and displacement estimation methods defined in Section 6.10.

Table 7.1 and Figure 7.1 show the results for Experiment 1. I first noted that the right earable performs better
than the left earable. This suggested that the calibration clip may be of a higher quality for this earable. The
left earable used the larger removable Arduino board design (Figure 3.3), whilst the right used the more
compact design. It is possible that the compact design reduced random rotation and hence performed better.
In the future, if a similar discrepancy was noticed, I could weight the contribution of each earbud.

For A, I noted that for the indoor setting test, this method performs as well as using individual earables.
However, it performed significantly worse for the outside tests. I can likely put this down to greater

40



Inside with Music Inside without Music Outside with Music Outside without Music
Final Displacement
Error / ms

�1
Final Displacement
Error / ms

�1
Final Displacement
Error / ms

�1
Final Displacement
Error / ms

�1

Average Standard
Deviation Average Standard

Deviation Average Standard
Deviation Average Standard

Deviation
Left Earable 0.180 0.129 0.173 0.096 0.199 0.044 0.226 0.025
Right Earable 0.182 0.152 0.135 0.081 0.180 0.144 0.139 0.082
Reference Heading 0.069 0.041 0.077 0.038 0.173 0.136 0.168 0.061
Experiment 1a 0.166 0.109 0.144 0.087 0.373 0.120 0.367 0.068
Experiment 1b 0.270 0.248 0.249 0.178 0.383 0.158 0.416 0.142
Experiment 1c 0.160 0.159 0.135 0.095 0.143 0.074 0.129 0.033
Experiment 1d 0.118 0.105 0.119 0.089 0.113 0.076 0.106 0.039
Experiment 1e 0.178 0.145 0.144 0.089 0.115 0.094 0.103 0.048
Experiment 1f 0.173 0.141 0.156 0.098 0.114 0.092 0.094 0.046

Table 7.1: Results for experiment 1

Fig. 7.1: Graph showing final displacement error for each experiment.

background noise, which could affect each device at slightly different times.

For all environments, using all data (B) performed worse than using individual earables. I hypothesise that
this is based on an issue of BLE timing. Packets are handled in spurts from each device and are labelled
with a timestamp on handling. It would be better to instead send a dispatch timestamp using the Arduino’s
crystal oscillators.

Averaging the heading (C and D) performed better than using each earable separately (by 28%). Using a
particle filter to fuse headings performed even better. It was statistically significantly better than all methods
inside and as good as position fusing methods outside.

Finally, averaging the position (E and F) performed much better than individual earables. Using a particle
filter did not significantly change the results.

I can conclude that the best all-around performing method is using a particle filter to fuse headings from
the two earables after calibrating and finding the headings independently.

7.2 Experiment 2: Combining IMU components from each earable

In this experiment, I considered using one IMU component from one earable and the two other components
from the other earable. This is motivated by the idea of reducing the current draw without significantly
hampering the tracking accuracy. Initially, I noted the results from Section 3.4 that say that using parts of
the IMU do not reduce the current draw.

However, a full design that leverages this concept could instead split up the gyroscope, magnetometer, and
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accelerometer with separate chips to distribute the current draw. Therefore, I tested pairing up data packets
and taking one element of the left earable and combining with two from the right earable and vice-versa.

Inside with Music Inside without Music Outside with Music Outside without Music
Final Displacement
Error / ms

�1
Final Displacement
Error / ms

�1
Final Displacement
Error / ms

�1
Final Displacement
Error / ms

�1

Average Standard
Deviation Average Standard

Deviation Average Standard
Deviation Average Standard

Deviation
Left Earable 0.180 0.129 0.173 0.096 0.199 0.044 0.226 0.025
Right Earable 0.182 0.152 0.135 0.081 0.180 0.144 0.139 0.082
Reference Heading 0.069 0.041 0.077 0.038 0.173 0.136 0.168 0.061
Experiment 2a
(Acc from one earable,
Gyro and Mag from
other earable)

0.265 0.232 0.233 0.128 0.447 0.087 0.455 0.114

Experiment 2b
(Gyro from one earable,
Acc and Mag from
other earable)

0.303 0.219 0.249 0.126 0.475 0.086 0.479 0.128

Experiment 2c
(Mag from one earable,
Acc and Gyro from
other earable)

0.175 0.109 0.148 0.092 0.387 0.125 0.394 0.142

Table 7.2: Results for experiment 2

Table 7.2 demonstrated that using the accelerometer or gyroscope on one earable performed significantly
worse for all environments (32%, 39%, 58% and 61%). This makes sense, since for the Madgwick filter,
the accelerometer and gyroscope are used closely together. The results for the magnetometer were more
complicated. For an indoor environment it performed only as well as a single earable, but not statistically
significantly better. Outdoors, where there is more noise, the method performed much worse than a single
earable. Therefore, this idea does not merit further testing.

7.3 Experiment 3: Mixing sampling rates of earables

Section 3.4 showed that reducing the data frequencies reduces the current draw of an earable. Therefore, I
compared the performance of both earables running at full data frequency (as observed in Experiment 1), with
one earable running at full speed and one running slower. This would offer battery life improvements. To
track, I used a particle filter to fuse headings from each earable, which Section 7.1 showed performed the best.

I considered the following scenarios:

• A: One earable at 20Hz and other at 10Hz

• B: One earable at 20Hz and other at 5Hz

• C: One earable at 20Hz and other at 2.5Hz

Inside with Music Inside without Music Outside with Music Outside without Music
Final Displacement
Error / msˆ(-1)

Final Displacement
Error / msˆ(-1)

Final Displacement
Error / msˆ(-1)

Final Displacement
Error / msˆ(-1)

Average Standard
Deviation Average Standard

Deviation Average Standard
Deviation Average Standard

Deviation
Left Earable 0.180 0.129 0.173 0.096 0.199 0.044 0.226 0.025
Right Earable 0.182 0.152 0.135 0.081 0.180 0.144 0.139 0.082
Reference Heading 0.069 0.041 0.077 0.038 0.173 0.136 0.168 0.061
Experiment 1d 0.118 0.105 0.119 0.089 0.113 0.076 0.106 0.039
Exp 3a 0.131 0.107 0.128 0.094 0.348 0.269 0.227 0.102
Exp 3b 0.168 0.100 0.156 0.081 0.349 0.138 0.204 0.049
Exp 3c 0.159 0.111 0.185 0.119 0.302 0.121 0.242 0.119

Table 7.3: Results for experiment 4.
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Fig. 7.2: Graph showing final displacement error for experiment 4

The results (Table 7.3 and Figure 7.2) demonstrated that dropping the data frequency of one earable generally
adversely impacted the displacement error. For indoor tests, there was a statistically significant difference
going from 20Hz to 10Hz and 10Hz to 5Hz, however, there was no difference going from 5Hz to 2.5Hz.
Additionally, the results for 10Hz and 5Hz still performed better than one earable individually.

For the outdoor tests, the changes in data frequency had a less obvious effect. There was no clear trend with
the reducing the second earable’s frequency. However, for all frequency reductions, there was a significant
negative impact. I suspect that this arose from an increased background noise that came from the outdoor
environment. This noise meant that additional measurements were important for tracking accuracy.

7.4 Experiment 4: Using occasional GPS updates

GPS uses around 40mA, which is higher than the total current draw of the earable prototype. I theorised
a method to reduce the power consumption of phone-based tracking by combining IMU data from the
earables with GPS from the phone to keep the tracking within a particular accuracy. I implemented this with
a particle filter which used GPS updates for particle re-sampling. To re-sample the particles given a GPS
measurement, I took the error model of GPS to be a Gaussian distribution with �=3.9m since the US claim
a 95% accuracy of 7.8m [59].

I looked at the required frequency of GPS updates to stay within a particular accuracy (15m). I found that
I required a GPS update an average of every thirty seconds to maintain the 15m accuracy outdoors. Using
current draw figures from a NEO-6, the ability to return the GPS to idle1, before using at high performance
for one second would reduce power usage by 65%.

1when a GPS lock is maintained
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Chapter 8

Conclusion
This work has assessed the viability of tracking without GPS on a miniature earable prototype with significant
success. The dissertation has considered a number of the challenges of earables that exist today including
the lack of earable platforms and noisy data. The former was dealt with by producing a new powerful
custom, portable earable platform. The latter was considered by defining a new complete earable IMU
calibration framework. The dissertation also considered inertial navigation specific problems, looking at
heading estimation and displacement estimation methods. I found that magnetometer heading methods
performed best, but were not always reliable, therefore should be fused with gyroscopic headings using a
complementary filter. With one earable, I achieved a minimum average heading error of 10° and tracking
drift of 0.15ms

�1. The testing was conducted on a new in-the-wild dataset run on six test subjects with
different environments and noise profiles.

Following this, I completed research into fusing data from two earables. When maximising tracking accuracy,
I reduced the drift by 27% using a particle filter to fuse individual headings. I also proposed a technique to
complete accurate (<15m error) smartphone tracking using earables with a 65% power reduction compared
to continuous GPS tracking.

8.1 Future Work

This dissertation, whilst expansive, has significant potential for future research:

1. Construction of a new device: There are several aspects of the device which can be revisited:

(a) The size of the device can be reduced using a smaller battery and further miniaturised circuitry
assembled using a pick-and-place machine.

(b) The mechanics can be redesigned to be more comfortable for more users and use better materials
such as TPU.

(c) A full audio driver chip can be included to allow for full audio output through the headphones,
rather than just tones.

2. INS algorithms: Through this dissertation, I considered a large number of INS algorithms. There are
however, even more to look at. In particular, with the larger new dataset that I collected, it would be
possible to consider Chen et al.’s [60] deep learning approach.

3. Systems research: Further work could move the tracking to the earables. This would require signif-
icant software engineering work to change the communications topology and translate the various
algorithms currently on the iPhone to run on the Arduino board.

4. Further evaluation: There are a number of other evaluation comparisons that could be made:

(a) Benchmarking the earable system, comparing our results to other wearable INS methods, such
as using a smartwatch.

(b) Completing a user study and more comprehensive evaluation of online inertial navigation on
the iOS application.
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Title of Study: Designing an end-to-end inertial navigation system using earables (Part III Project)

Dates: 10/03/2021 ==> 31/05/2021

Study Type: Controlled Experiment

Description

The aim of this research is to explore the feasibility of tracking using smart earbuds which contain an
Inertial Measurement Unit (accelerometer, gyroscope and magnetometer) and no GPS. Data will be
collected when participants walk around two pre-planned routes wearing logging hardware.

Participants will wear two custom built prototype printed circuit boards (designed and assembled by the
investigators). The boards contain an Arduino Nano 33 BLE Sense
(https://store.arduino.cc/arduino-nano-33-ble-sense) with an IMU as well as power delivery and
management. The components are held within a custom 3D printed casing to hold the prototype to the
participant’s ear. If required, a headband, beanie hat or adhesive tape will be available to hold the device in
place. The prototype has been thoroughly tested, including leaving the device running for six hours with no
perceivable change in temperature of the casing. Each participant will wear a prototype on each ear. An
image of the prototype to be worn is shown below:

The prototype aims to simulate a smart pair of earhook-style earbuds and are required since no existing
earbuds contain a magnetometer. They will also hold an iPhone and wear an Apple Watch (both provided
by the investigators). The participant will be required to walk around two routes:

● Up and down the first-floor corridor in 35/37 Chesterton Road five times. This is the primary
researcher’s house, and all participants will be recruited from this household (same bubble) to
ensure minimal COVID-19 risk.

● Around a specific path, shown in the below image.
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In both cases, participants will be asked to use the phone naturally. We expect that the phone will mostly
be in the participants pockets, with them occasionally taking it out of their pocket to check messages etc.
When taking the phone out of their pocket, the participant will be asked to tap a button on an app. For
each route, the participant will complete twice, once whilst wearing in-ear headphones (provided by the
participant to reduce COVID contamination risk) and listening to music, and once without in-ear
headphones. The test will take half an hour, and the following data will be recorded:

● IMU (accelerometer, gyroscope and magnetometer) data from the prototype boards (2x)
● IMU and GPS data from the iPhone as well as timestamps of taps of a button on an app
● IMU data from the Apple Watch

Around 5-10 participants will be recruited, all taken from the primary researcher’s household. In addition,
due to current legislation, the participants will be asked to conduct the outdoor portion of the test as part
of their allowable daily exercise. All participants will be undergraduate or postgraduate students of
different ages and genders. Each participant will be briefed about the research study before the tests.
Social distancing will be maintained at all times and all items used for the experiment (the prototypes,
iPhone and Apple Watch) will be sterilized externally before each experiment. Hand sanitizer will also be
provided so that both the participant and researcher can sanitize their hands before and after the
experiment. The participants will also be asked to wear a face-mask at all times throughout the data
collection.

All information collected in this study is confidential. The participants will be identified with anonymized
user labels (e.g. user 1, user 2, etc.). All the data will be saved on a secured server in the Department. Only
researchers in the research team will be able to access the collected data initially. We will release the
sensing data (without any identifying information) to the research community via online public platforms
such as GitHub after participation. The results obtained from the work with this dataset will be
disseminated by inclusion in a Part III dissertation, PhD thesis and by publishing in scientific journals and
conference proceedings.

Precautions
Participants will be volunteers, each signing a consent form specifying their rights prior to the study (see
attached form).

One day prior to the experiments, the participants will be contacted to examine whether they have any
COVID symptoms or been in contact with anyone who has. The participant will not be recruited if either
one of the answers is ‘yes’.

No personal data (like gender and age) will be recorded.
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Participants will be asked to wash their hands before and after data collection.

Participants will be asked if they have allergies to any form of tape before the experiment and will be asked
again if tape is required to hold the prototype to the participants’ ears.

The hardware (prototypes, iPhone and Apple Watch) will be sterilized using cleaning spray and wipes
before and after the experiment.

The beanie hat and headband will be machine washed after every use.

At all times, social distancing will be maintained, and face masks will be worn.

Portable batteries used in the project will be checked before each experiment, and the participants will be
informed of electrical safety.

Participants will be informed of the heat testing that has been performed and told to stop the test if at any
time they feel the device has warmed up.

No sound will be recorded.

Participants will be briefed and made aware of the aims of the study and the fact that they have the right to
withdraw at any time. They will be able to find out the results of the study by contacting the researchers.

Participants will not be subject to physical or mental harm or deceived.

When walking using the prototype, the researcher will walk behind to warn them of any possible danger.
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Designing an Inertial Navigation System using Earables
Experiment - Consent Form
Experiment Purpose & Procedure

The purpose of this experiment is to determine the error in location and heading tracking using earables when
walking around.

The experiment consists of 2 parts. In the first part, you will be asked to walk up and down the first-floor corridor
of your house (35/37 Chesterton Road) five times. In the second part, you will be asked to walk around the block
nearest the house, going East on Chesterton Road, turning left onto Carlyle Road, following it and then turning left
onto Alpha Road, finishing by turning left back onto Chesterton Road. The researcher will walk the route with you,
maintaining social distancing at all times. This route is shown below:

You should walk each route twice, once whilst listening to music and once whilst not listening to music. You are
requested to provide headphones to listen to music, but sanitized earphones can be required by the researcher on
request. For both routes, you will be required to wear a prototype location logging device on both ears and an
Apple Watch. You will also be required to use an iPhone naturally. This should involve the phone mostly being in
your pocket or bag but perhaps being checked on occasion to emulate responding to a message or checking the
news. When taking the phone out of your pocket, a button on the active iPhone app should be tapped. The
prototype, Apple Watch and iPhone will all be sterilized before the experiment and hand sanitizer are provided.
You should wear a facemask throughout the experiment. The second part of the experiment should be conducted
as part of your legally allowable daily exercise.

You should ask any questions to the researcher. Please note that none of the tasks is a test of your personal
intelligence or ability. The objective is to test the accuracy of our research systems.

Confidentiality

The following data will be recorded:

● Motion data (accelerometer, gyroscope and magnetometer) from the prototype on each ear
● Motion data (accelerometer, gyroscope and magnetometer) from the Apple Watch
● Motion data (accelerometer, gyroscope, magnetometer and GPS provided location) from the iPhone
● The timestamp of user taps of the screen to indicate them looking at their device

All data will be coded so that your anonymity will be protected in any research papers and presentations that
result from this work.

Finding out about result

If interested, you can find out the result of the study by contacting the researcher x, after date 31/05/2021. His
phone number is x and his email address is crsid@cam.ac.uk.

(the following section can be torn off, and retained by researcher, with participant keeping above information)
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Record of Consent
Your signature below indicates that you have understood the information about the inertial navigation on earables
experiment and consent to your participation. The participation is voluntary and you may refuse to complete any
part of the experiment and withdraw from the study at any time with no penalty. This does not waive your legal
rights. You should have received a copy of the consent form for your own record. If you have further questions
related to this research, please contact the researcher.

 _________________ _________________

Participant Date

_________________ _________________

Researcher Date
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