
Ashwin Ahuja – Foundations of Computer Science

 1

Foundations of Computer Science
Introduction to Programming
Abstraction and Abstraction Barrier:
Abstraction is the idea that large systems can only be understood in levels, with each level
further subdivided into functions, with the higher level supplying the services. The idea is that
you don’t need to know about the lower levels to use something, only about the next highest
level.
!
"#$%&&'()!'**%#*+!
1.! What services at each level
2.! How to implement them using lower-level services
3.! How to allow levels to communicate
!
,-*.&/$.'0(!1/&&'#&+!Allowing one level of a system to be changed without affecting levels
above it. When a chip manufacturer changes the processor, existing programs must continue
to be able to run on them.

Date
This is an example of problem of ensuring that old formats of items continue to be useable.
Programming languages like ML allow you to define the method of storing information, but
the system must still allow for old formats to work.

2#.304*!05!*.0&'()+!
1.! Abstract Level – Dates over a certain interval
2.! Concrete Level – Typically YYMMDD (with one byte for each digit).

a.! However, this threw up the issue of the millennium crisis, when they could easily
simply add another two digits.

b.! However, already using 48 bits, which is enough for the entire lifetime of the
universe.

3.! Digital’s PDP-10: Uses 12 bit dates
a.! This only allows for dates for 11 years, therefore it doesn’t work

Representational Abstraction and Datatypes
The idea of representational abstraction is that we invoke a type of an object without caring
about how it is implemented in hardware.

6/./.78#*+ !
1.! How a value is represented inside the computer
2.! The suite of operations given to the programmers regarding the datatypes.
3.! Valid and invalid (or exceptional) results.

90**'-:#!;(/$$%&/$'#*!
Floating point inaccuracies are common, with errors spiralling out of control since not all
numbers are necessarily representable using the floating-point representation in hardware.
(For this, a mantissa and an exponent are stored).

Ashwin Ahuja – Foundations of Computer Science

 2

9&#$'*'0(*!
Range of precisions are possible, for example 32 bits, 64 bits etc which defines the amount of
memory space which would be given to that.
!
Goal of Programming
1.! To describe a computation so that it can be done mechanically.

a.! Expressions compute values
i.! For describing mathematical formulae and suchlike.

ii.! Original contribution of FORTRAN (Formula Translator)
b.! Commands cause effects

i.! Commands describe how control should flow from one part of the program
to another.

2.! To do so efficiently and correctly, giving the right answers quickly
3.! To allow easy modification as needs change

a.! Through orderly structure based on abstraction principles
i.! Such as modules and classes (OOP)

¥! Modules encapsulate a body of code, allowing outside access only
through a programmer-defined interface.

¥! ,-*.&/$.! 6/./.78#*+! Simpler version of this concept, which
implement a single concept such as dates or floating-point
numbers.

Why ML
1.! Interactive
2.! Flexible notion of data types.
3.! <'4#*!.3#!%(4#&:7'()!3/&4=/&#>!'#!(0!$&/*3#*?
4.! Programs can easily be understood mathematically.
5.! Distinguishing naming something from updating memory (you have no idea what’s

happening in the memory).
6.! Manages storage for us

ML Items
@/:%#!6#$:/&/.'0(+!Makes a name ('4#(.'5'#&)!stand for an item (such as val pi = 3.14159;)
;(5'A!B8#&/.0&*+!Infix operator is effectively a function which acts on two arguments which is
defined as ‘infix’. When defined as infix, the function name is placed between the two
arguments – such as ‘a * b’
C%($.'0(*+!A method of encapsulated computation taking a number of inputs and returning
an output (this output may be a unit – ())
"#$%&*'0(+!Recursion is the idea that a function calls itself, normally with different arguments
and a base case at which the recursion stops.
BD#&:0/4'()+!Overloading is the idea that the type of a function may be ambiguous, since a
number of operators (~, +, -, *) and relations (<, <=, >, >=) are defined for both integers and
reals. In this case, the type of the function can be defined using the following (‘: real’ for
example) or otherwise the ML compiler defaults to an integer.
100:#/(! EA8&#**'0(*+!Boolean Expressions are any expressions which return one of two
values, either a ‘true’ or a ‘false’. They are expressed using relational operators as well as

Ashwin Ahuja – Foundations of Computer Science

 3

Boolean operators for negation (not), conjunction (andalso) or disjunction (orelse). F?1?!
/(4/:*0 !/(4!0&#:*#!=0&G!-7!*.088'()!#D/:%/.'()!/*!*00(!/*!80**'-:#>!'?#?!'5!.3#&#!'*!/!H!'(!.3#!
5'&*.!/&)%I#(.!05!/(!/(4/:*0>!'.!='::!*.08!J/(4!*/I#!50&!/!K!'(!0&#:*#L?!

Recursion and Efficiency
Iterative Methods
A recursive function whose computation does not nest is called iterative or tail-recursive, by
introducing another element, often known as the accumulator. This ensures that the space
complexity is much reduced generally and therefore it is often better to use.

fun summing(n, total) =
 if n=0 then total
 else summing(n-1, n+total);

fun summing (n) =
 if n=0 then 0
 else n + summing(n-1);

Recursion vs Iteration
NB: Iterative functions are functions which produce computations reflecting those which can
be done using while-loops in conventional languages. All other ‘iterative’ functions are tail-
recursive functions

¥! Tail-recursion is efficient only if the compiler detects it.
¥! Iterative functions save space and often run faster.
¥! However, it leads to functions having more arguments than are necessary.

Generally, write straightforward code first (often recursive) simply avoiding gross inefficiency
and then consider how long it would take to run.

Time Complexities
,*7I8.0.'$!M0I8:#A'.7+! It refers to how costs – normally time or space – grow with increasing
inputs (as the number of inputs go to infinity). N8/$#!$0I8:#A'.7!$/(! (#D#&!#A$##4! .'I#!
$0I8:#A'.7!/*!'.!./G#*!.'I#!.0!40!/(7.3'()!='.3!*8/$#? !
!
F0./.'0(+!! !
!
1.! B!F0./.'0(! defined by

𝑓(𝑛) = 	𝑂(𝑔(𝑛)*	𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑	|𝑓(𝑛)| ≤ 𝑐|𝑔(𝑛)|	
where f(n) is bounded by some constant c for all sufficiently large n.

2.! ! is a lower bound for a function asymptotically.
3.! " is an exact bound – ie ! (f(n)) = O(f(n)) = " (f(n))

B!F0./.'0(!

Ashwin Ahuja – Foundations of Computer Science

 4

O(2g(n)) = O(g(n))
O(log10n) = O(ln n) (since it is a scalar factor to convert between the two)
O(n2 + 50n + 36) = O(n2)
O(n2) is contained within O(n3)
O(2n) is contained within O(2n) – ie if f(n) = O(2n) => f(n) = O(3n) by triviality but the reverse
doesn’t hold.
O(log n) is contained within O(n1/2)
O(1) = constant
O(log n) = logarithmic
O(n) = linear
O(n log n) = quasi-linear
O(n2) = quadratic
O(n3) = cubic
O(an) = exponential
"#$%&&#($#!"#:/.'0(*!

T(n+1) = T(n) + 1 O(n)
T(n+1) = T(n) + n O(n2)
T(n) = T(n/2) + 1 O(log n)
T(n) = 2T(n/2) + n O(n log n)

!

Lists
A list is an ordered series of elements, with repetitions and ordering being significant.
All elements must have the same type.

O = append two lists
&#D = reverses a list
Lists are &#*#(.#4! '(.#&(/::7! ='.3! /! :'(G#4! *.&%$.%&#, where adding a new element
(Cons’ing) simply ‘hooks’ the new element to the front of the existing structure.
F':!0&!PQ!'*!.3#!#I8.7!:'*.!
x :: l is the list with head of x and the tail (containing the rest of the elements) is l
++!(the process of adding to the head of the list) '*!/(!BJKL operation.

Calculating Length
Both recursive and iterative are O(n) space complexity, but iterative is only O(1) space
complexity, while recursive is O(n) space complexity.

fun nlength(n, []) = n
| nlength(n, x::xs) = length(n+1, xs);

fun length(xs) = nlength(0, xs);

List Concatenation (and reversal)
The append function is clearly an O(n) function in terms of both space and time where n is
the length of the first argument (the function is independent of the length of the second
argument).

Ashwin Ahuja – Foundations of Computer Science

 5

Therefore using the append function in another function, such as the badReverse adds a lot
of time complexity, therefore making it O(n2) trivially in this case (= 0 + 1 + 2 … + n = ½ n(n+1)
= O(n2)). badReverse has a space complexity of O(n) because copies of items don’t exist at the
same time.

goodReverse on the other hand makes use of the cons system and uses another item as an
accumulator to make the process much more efficient (O(n) in terms of both time and space)
!
fun append([], ys) = ys
| append(x :: xs, ys) = x :: append(xs, ys);

fun badReverse [] = []
| badReverse (x :: xs) = badReverse(xs) @ [x]

fun goodReverse ([], ys) = ys
| goodReverse(x :: xs, ys) = goodReverse(xs, x::ys)
!

!
Take and Drop
fun take ([], _) = []
| take(x:xs, i) = if (i > 0) then x :: take (xs, i - 1)
 else [];

fun drop ([], _) = []
| drop (x :: xs, i) = if (i > 0) then drop(xs, i-1)
 else x::xs;

!
Both make use of the wildcard pattern (‘_’) which says that it could be anything and the
pattern would be matched (in that place).

Both ‘take’ and ‘drop’ are O(i) in time complexity and take is O(i) in space complexity. Drop is
O(1) in space complexity.
!
Linear Search
Used when the list where the item to be found in is unordered and unindexed. It is O(n). When
the list is ordered, it take O(log n), while and indexed lookup takes O(1).
!
Polymorphism
‘a, ‘b, etc (alpha, beta, etc) are used as type variables and can stand for any type. Code written
using these functions is checked for type correctness at compile time. This guarantees strong
properties at run time, such as all the elements of any list are the same type.
!
Equality Types
Equality types are types for which equality testing is allowed – these are not things like
functions, where equality is impossible to test. It is even not allowed for reals, though some
ML systems ignore this rule.
Abstract types can be declared in ML, hiding their internal representation, thereby the
contents of the equality test can be changed so that two things can be tested to be equal.

Ashwin Ahuja – Foundations of Computer Science

 6

!
Zip and Unzip
fun zip (x::xs, y::ys) = (x,y) :: zip(xs, ys)
| zip _ = [];

fun unzip [] = ([],[])
| unzip ((x, y) :: pairs) =
 let val (xs, ys) = unzip pairs
 in (x :: xs, y :: ys)
 end;

fun revUnzip ([], xs, ys) = (xs, ys)
| revUnzip ((x, y) :: pairs, xs, ys) = revUnzip (pairs, x :: xs, y :: ys);

!
Making Change
fun change (till, 0) = []
| change (c :: till, amt) = if (amt < c) then change(till, amt)
 else c :: change(c :: till, amt - c);

fun allWaysOfMakingChange (till, 0, chg, chgs) = chg :: chgs
| allWaysOfMakingChange ([], amt, chg, chgs) = chgs
| allWaysOfMakingChange (c :: till, amt, chg, chgs) =
 if amt<0 then chgs
 else change (c::till, amt-c, c::chg, change(till, amt, chg, chgs));
!

!
Strings and Characters
In ML, strings are an abstract concept in and of themselves, and aren’t simply a list of
characters and so they should not be treated as such.

Characters are similarly not strings of length one but are a primitive concept of their own.
They have the form #’c’ where c is any character. Special characters are coded using escape
sequences using the backslash character.
!
C%($.'0(*!
¥! explode(s) – list of characters in string s!
¥! implode(l) – string of characters in list s!
¥! size(s) – length of string s!
¥! s1 ^ s2 – concatenation of strings s1 and s2!
¥! s1 < s2 (similarly for <=, >, >=) – uses a lexicographic order with respect to ASCII character

codes (alphabetic order) to determine if Boolean expression is true or false.!
!

Sorting
Why sort?
1.! Fast search

a.! O(log n) instead of O(n) to find an item using a binary search
2.! Fast merges

Ashwin Ahuja – Foundations of Computer Science

 7

3.! Finding duplicates
4.! Graphics algorithms

Random Number Generator
local val a = 16807.0 and m = 2147483647.0
in fun nextrandom seed =
 let val t = a*seed
 in t - m * real (floor(t/m))
 end
 and truncto k r = 1 + floor((r/m) * (real k))
end;

fun randlist (n, seed, seeds) =
 if n = 0 then (seed, seeds)
 else randlist(n-1, nextrandom seed, seed::seeds);
val (seed, rs) = randlist(10000, 1.0, []);

Optimal Speed of Sorting
n! permutations of n elements and each comparison compares exactly two combinations.
Therefore, the number of comparisons C(n) can be said to be the following:

26(7) 	≥ 𝑛!
𝐻𝑒𝑛𝑐𝑒, 𝐶(𝑛) ≥ log(𝑛!) ≈ 𝑛𝑙𝑜𝑔(𝑛) − 1.44𝑛

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝐶(𝑛) ≥ 𝑛𝑙𝑜𝑔(𝑛)

Therefore, sorting algorithms such as mergesort, which have time complexity of O(nlog(n))
have technically got the optimal time complexity.
!
Insertion Sort
Insertion Sort takes each item of the array and places it in the correct position in the list one
at a time, therefore taking O(n2) comparisons asymptotically. It is therefore not at all efficient.
It also takes up lots of space (O(n)).
fun ins(x :: real, []) = [x]
| ins(x :: real, y :: ys) = if (x < y) then x :: y :: ys
 else y :: ins(x, ys);

fun insertionSort [] = []
| insertionSort (x :: xs) = ins(x, insertionSort xs);

Quicksort
Quicksort is much faster (also can work in-place, therefore having space complexity of O(1))
and works in the following way:

1.! Choose a pivot element
2.! Divide list into two sublists: those greater than (or equal) to the pivot and those less

than the pivot
3.! Recursively sort the sublists

Ashwin Ahuja – Foundations of Computer Science

 8

4.! Combine the sorted lists by appending one to the other.

Obviously, it seems well suited to using appending of lists, however, we can also do it without
appends, which would of course make the system more efficient.

In terms of specific time complexity, we can consider both the average case and the worst-
case complexity. In the /D#&/)#!$/*#, the pivot will fall in the middle of the list, therefore
making the problem of this sort:

𝑇(𝑛) = 	2𝑇 H
1
2𝑛I + 𝑛, 𝑇(1) = 	1

This can be followed down to:
𝑇(𝑛) = 	𝑂(𝑛𝑙𝑜𝑔(𝑛))

However, in the worst case, where the item is either reverse sorted or almost sorted. In this
case, nearly all the elements fall on one side of the pivot, therefore:

𝑇(𝑛) = 	𝑇(𝑛 − 1) + 	𝑛, 𝑇(1) = 	1
This becomes:

𝑇(𝑛) = 	𝑂(𝑛K)
However, we can attempt to avoid this by simply randomising the order of inputs before
attempting to sort them, therefore reducing the likelihood that they are sorted.

fun quickSortWithAppend [] = []
| quickSortWithAppend [x] = [x] (* This singleton makes the code 20% faster *)
| quickSortWithAppend (a :: bs) =
 let fun partition (l, r, []) : real list = quick (l) @ (a :: quick (r))
 | partition (l, r, x :: xs) = if (x <= a) then partition (x::l, r, xs)
 else partition(l, x::r, xs)
 in partition([],[],bs)
 end;

fun quickSortNoAppend ([], sorted) = sorted
| quickSortNoAppend ([x], sorted) = x::sorted
| quickSortNoAppend (a :: bs, sorted) =
 let fun partition (l, r, []) : real list = quick (l) @ (a :: quick (r))
 | partition (l, r, x :: xs) = if (x <= a) then partition (x::l, r, xs)
 else partition(l, x::r, xs)
 in partition([],[],bs)
 end;

Merging and Merge Sort
Merging two lists takes at most O(m+n) where m and n are the length of the two lists.

Merge Sort takes the idea of splitting the list into two parts, sorting each one (recursively)
and then merging the two lists together.

This has time complexity as:

𝑇(𝑛) = 	2𝑇 H
1
2𝑛I + 	𝑛, 𝑇(1) = 	1

Ashwin Ahuja – Foundations of Computer Science

 9

This becomes:
𝑇(𝑛) = 	𝑂(𝑛 log(𝑛))

Though this is the same as the average case as quicksort, this is often actually much slower
than quicksort, however is safe, always taking the same amount of time whereas merge sort
can take quadratic time.

We consider only the top-down merge sort (where we split them into subsequently smaller
lists), however, the bottom-up merge sort system also exists where we start with a list of one-
element lists and repeatedly merge lists until we only have one list.

Radix Sort
This is a sorting system by which we look at the representation of an integer, therefore not
completing any comparisons between the numbers themselves, just parts of them. For
example:

You first sort the LSB, followed by the next significant bit and so on until the entire thing is
sorted.

The time complexity of this is (where d is the number of digits of the numbers and b is the
number of different values that can be represented by one digit):

𝑂(𝑑(𝑛 + 𝑏))
For small integers, where d is a small constant, it becomes O(bn) which is equivalent to O(n).
!
Datatypes and Trees
Declaring Datatypes
You can define an #(%I#&/.'0(!.78# , where a datatype can be one of a number of identifiers,
as below. This is better than using an integer to represent them as it is far more flexible,
allowing people to add items easily without changing the numbers that are used. Additionally,
better than using a string (the identifier), because then the code would not work in the case
of mistypes, but would likely return no error. R0%!$/(!40!8/..#&(!I/.$3'()!0(!#(%I#&/.'0(!
.78#*!'(!5%($.'0(*>!*%$3!/*!.3#!5%($.'0(!-#:0=?!
!
S3#!50%&!'4#(.'5'#&*!.3/.!/!D#3'$:#!$0%:4!-#!/&#!#/$3!/!$0(*.&%$.0&!05!.3#!0-T#$.!05!.3/.!.78#?
datatype vehicle = Bike
 | Motorbike
 | Car
 | Lorry;

Ashwin Ahuja – Foundations of Computer Science

 10

fun wheels Bike = 2
| wheels Motorbike = 2
| wheels Car = 4
| wheels Lorry = 18;

As the identifiers are constructors, ML allows data to be associated with each constructor, eg:
datatype vehicle2 = Bike
 | Motorbike of int
 | Car of bool
 | Lorry of real;

Here vehicle2 is an example of a concept consisting of several varieties with distinct features.
In other programming languages, these are often represented by things close to datatypes,
often called %('0(!.78#*!or D/&'/(.!&#$0&4*!(where ./)!5'#:4*!are effectively the constructor).

Exceptions
Exceptions are necessary because it is not always possible to tell in advance whether or not
an error will occur. Rather than crashing, programs should check whether things have gone
wrong and attempt an alternative computation.

Exception handling allows us to recover properly:
1.! "/'*'()!/(!#A$#8.'0(! abandons the current computation
2.! </(4:'()!.3#!#A$#8.'0(! attempts an alternative computation
3.! "/'*'()!/(4!3/(4:'()!$/(!-#!5/&!/8/&.!'(!$04#
4.! E&&0&*!05!4'55#&#(.!*0&.*!$/(!-#!3/(4:#4!*#8/&/.#:7

In ML, before an exception can be used, it must be declared, as follows:
exception Failure;
exception NoChange of int;

Exception names are constructors of the special datatype #A(?!S3'*!:#.*!#A$#8.'0(!3/(4:#&*!
%*#!8/..#&(!I/.$3'()? !
!
In order to raise and handle exceptions, the following can be used:
raise Failure;
raise (NoChange 10)

handle Failure => E (* E is a function that should be called *)
handle NoChange (n) => return n

N.B. Unlike in Java there is no indication that a function can throw an exception. One
alternative to exceptions is to return a value of a new datatype
datatype 'a option = NONE | SOME of 'a;

Where NONE represents than an error and SOME x is the solution x. While clean, this would
be very annoying, needing to check for NONE in a lot of places (not just being able to handle
it).

Ashwin Ahuja – Foundations of Computer Science

 11

Binary Trees
A tree is a data structure with multiple branching, providing efficient storage and retrieval of
information. In a binary tree, a node is either empty (leaf node) or is a branch with a label and
two subtrees.
datatype 'a tree = Lf | Br of 'a * 'a tree * 'a tree;

M0%(.'()!(%I-#&!05!(04#*!
fun count Lf = 0
| count Br(_, tl, tr) = 1 + count tl + count tr;

!
C'(4'()!4#8.3!05!.&##!
fun depth Lf = 0
| depth Br (_, tl, tr) = 1 + Int.max(depth tl, depth tr);

Dictionaries and Functional Arrays
Dictionary Idea
A dictionary attaches values to identifiers (known as the key). The key is unique and you
should be able to locate the value using the key in a dictionary data structure.

A dictionary is an example of an abstract data type given it provides specified operations while
hiding low level details of how exactly the operations work and how the data is stored.

For a dictionary, the following operations must be provided:
1.! U00G%8+!find an item in the dictionary
2.! V84/.#!J'(*#&.L+ replace an item in the dictionary
3.! 6#:#.#+ remove an item from the dictionary
4.! EI8.7+ have a null dictionary
5.! 2'**'()!EA$#8.'0(+ when there are errors in lookup and delete

,**0$'/.'0(!U'*. !
The simplest way of working would be with an association list – a list of two-tuples. Lookup is
slow, taking O(n), however they are often used if there is no way to order, simply having an
equality in the type. To add a new item to the list, a new tuple must simply be ‘cons’ed to the
list – this takes constant time. However, the update and lookup times mean that this is
generally not used.
Binary Search Trees

Ashwin Ahuja – Foundations of Computer Science

 12

Each branch of the tree carries a (key, value) pair with the left subtree containing items with
smaller keys and the right subtree containing items with larger keys. If the tree is reasonably
balanced, then update and lookup both take O(log n) for a tree of size n. Meanwhile, an
unbalanced tree has a linear (O(n)) access time in the worst case.

In addition to being used for dictionaries, binary search trees are also used for sorting – adding
all elements to a tree, before doing an in-order traversal to get the items in order.

There are also self-balancing trees, called Red-Black trees, which are O(log n) for access in the
worst case. However, these are generally rather hard to implement.

exception Missing of string;

fun lookup (Lf, b) = raise Missing b;
| lookup (Br((a,x), tl, tr), b) = if (b < a) then lookup(tl, b)
 else if (b > a) then lookup (tr, b)
 else x;

fun update (Lf, b : string, y) = Br ((b, y), Lf, Lf)
| update (Br((a,x), tl, tr)) = if (b < a) then Br((a,x), update(tl, b, y),
tr)
 else if (b > a) then Br((a,x, tl, update(tr,
b, y)))
 else Br((a,y), tl, tr);

Since (for update) the paths are simply copied, the parts of the tree are shared, not copied.

Traversing Trees

V*#*!
¥! Preorder is often used to copy the tree.
¥! Inorder is used for sorting, getting the tree in the correct order.
¥! Postorder converts from infix to Reverse Polish Notation, used by compilers.

N.B. All these types of tree traversal are depth first traversals. They each traverse the left
subtree before traversing the right one.

fun preord (Lf, vs) = vs
| preord (Br(v, t1, t2), vs) = v :: preord(t1, preord(t2, vs));

Ashwin Ahuja – Foundations of Computer Science

 13

fun inord (Lf, vs) = vs
| inord (Br(v, t1, t2), vs) = inord(t1, v :: inord(t2, vs));

fun postord (Lf, vs) = vs
| postord(Br(v, t1, t2), vs) = postord(t1, postord(t2, v::vs));

;(.#&*#$.'0(!05!.=0!1'(/&7!S&##*!
fun intersection (Lf, t2, out) = out
| intersection(Br((a,x), tl, tr), t2, out) =
 let val newTree = intersection(tl, t2, (intersection(tr,t2, out)))
 in
 if(lookup(u,a) = x) then update(newTree, a, x) else newTree
 handle Missing _ => newTree
 end;

!
Functional Arrays
A conventional array is an indexed storage area and is updated in place by the command A[k]
:= x
A functional array is a finite map from integers to data, where updating implies copying with
every other item of the array equalling what it was before, except the item to be changed has
now been updated.

In a functional array, items are stored in the position of a binary tree according to the diagram
above, ie A[2] will be the left label of the first branch.

As can be seen, the lower bound for array indices is 1; the upper bound is 0 (this represents
an empty array) and can grow without limit.

Since the tree is clearly always balanced, the access time for updating or adding is O(log n)

exception Subscript;
fun sub (Lf, _) = raise Subscript
| sub (Br(v, t1, t2), k) = if k=1 then v
 else if k mod 2 = 0
 then sub(t1, k div 2)
 else sub(t2, k div 2);

Ashwin Ahuja – Foundations of Computer Science

 14

fun update(Lf, k, w) = if k = 1 then Br(w, Lf, Lf)
 else raise Subscript
| update(Br(v, t1, t2), k, w) = if k=1 then Br(w, t1, t2)
 else if k mod 2 = 0
 then Br(v, update(t1, k, w), t2)
 else Br(v, t1, update(t2, k, w));

6'$.'0(/&7!2#.304* !

Linear Search More general, only needs equality on keys but inefficient – linear
time

Binary Search Needs an ordering on keys. Logarithmic access time in the average
case but linear in worst case.

Array Subscripting Least general, requiring keys to be integers, but even worst-case
time is logarithmic.

Functions
In ML, functions can be passed as arguments to other functions, returned as results, put into
lists, trees, etc, nut $/((0.! be tested for equality.

They don’t necessarily need names, the function can be referred to as:
Fn x => f(x)
You can also have pattern matching in this definition, for example:
Val not = (fn false => true | true => false)

Currying
Currying is the technique of expressing a function taking multiple arguments as nested
functions, each taking a single argument. You can call the main function and fill in the first
argument(s) and receive another function which has the other arguments as the arguments
to the function. This is known as 8/&.'/:!/88:'$/.'0(when fixing the first argument(s) yields a
useful function in and of its own. An example:

fun insort lessequal =
 let fun ins(x, []) = [x]
 | ins(x, y :: ys) = if lessequal(x, y) then x :: y :: ys
 else y :: ins(x, ys);
 fun sort [] = []
 | sort(x :: xs) = ins (x, sort xs)
 in sort
 end;

insort(op<=) [5,3,9,8]; (* Returns [3,5,8,9] *)
insort(op<=)["bitten","on","a","bee"]; (* Returns them alphabetically ordered *)
insort (op>=) (* Returns a function to sort descending *)

Ashwin Ahuja – Foundations of Computer Science

 15

Map
The functional map applies a function on every element of a list, returning a list of the
function’s result, effectively this (though it is a built in ML function):

fun map f [] = []
| map f (x :: xs) = (f x) :: map f xs;

EA/I8:#!K+!S&/(*80*#!/!2/.&'A!
fun transp ([]::_) = []
| transp (rows) = (map hd rows) :: (transp (map tl rows));

!
EA/I8:#!W+!2/.&'A!2%:.'8:'$/.'0(!J:00G%8!'5!%(*%&#!30=!'.!=0&G*!X!8/)#!YWL!
fun dotprod [] = 0.0
| dotprod(x :: xs, y :: ys) = x*y + dotprod(xs, ys);

fun matprod(Arows, Brows) =
 let val cols = transp Brows
 in map(fn row => map (dotprod row) cols) Arows
 end;

!
Predicate Functionals
EA'*.*!
Transforms a predicate into a predicate over a list. Given a list, exists p checks whether the
list has some element which satisfies p (making it return true immediately).
fun exists p [] = false
| exists p (x::xs) = (p x) orelse (exists p xs);

C':.#&!
Applies a predicate to all list elements of a list and returns a list of the elements which satisfy
the predicate.
fun filter p [] = []
| filter p (x::xs) = if (p x) then x :: (filter p xs)
 else filter p xs;

,:: !
Functional to test whether all elements of a list satisfy a predicate.
fun all p [] = true
| all p (x :: xs) = (p x) andalso all p xs;

EA/I8:#*+!
fun member(y, xs) = exists (fn x => x=y) xs;
fun inter(xs, ys) = filter (fn x => member(x,ys)) xs;
fun disjoint(xs, ys) = all (fn x => all (fn y => x<>y) ys) xs;

!
!
Lazy Lists
Pipeline
There are two types of program:

Ashwin Ahuja – Foundations of Computer Science

 16

¥! N#Z%#(.'/:!9&0)&/I
o! Accepts problem to solve, processes then terminates with the result.
o! This is most of the code that is written.

¥! "#/$.'D#!9&0)&/I*
o! Interacts with the environment, communicating constantly, running for as long as

is necessary.
o! For example, the software controlling an airplane.
o! Often consists of concurrent processes running at the same time and

communicating with one another.
Lazy Lists allow us to start to consider a reactive program pipeline, where the program
receives more data upon command (in this case upon command by the user).

9'8#:'(#!$0(*'*.*!05+!
¥! 9&04%$#!sequence of items!
¥! C':.#&!sequence in stages!
¥! M0(*%I#!results as needed!
!
U/[7!U'*.*!T0'(!.3#!*./)#*!.0)#.3#&!
Definition
Lazy Lists are lists of possibly infinite length with elements computed upon demand. This
avoids waste if there are many solutions as a defined number of solutions can easily be found.
In ML, you implement laziness by having a tail which is delayed in its evaluation until
something else happens – the tail function is called.

Also, infinite objects are generally a useful abstraction for a system to utilise a problem which
could have an unbounded number of results.

Implementation
In ML, Lazy Lists (or sequences) are implemented as the following:
datatype 'a seq = Nil | Cons of 'a * (unit -> 'a seq);
fun head (Cons(x, _)) = x;
fun tail (Cons(_, xf)) = xf();

Therefore a sequence item is made of the item itself and a function (taking ‘no’ argument)
and getting the next item. The next item is not calculated until the tail function is called.

EA/I8:#+!;(5'('.#!N#Z%#($#!05!'(.#)#&*!
fun from k = Cons(k, fn()=> from(k+1));
from 1;

!
Convert to List
Since it could technically be an infinite list, we must instead of converting the entire sequence,
only convert the first n elements of the sequence, hence:
fun get (0, xq) = []

Ashwin Ahuja – Foundations of Computer Science

 17

| get (n, Nil) = []
| get (n, Cons(x, xf)) = x :: get(n-1, xf());

Joining
While we could technically append one sequence onto another as below, it makes no sense
at all, just because the first sequence that we are attempting to get through has the potential
to be infinitely long. Therefore, we instead choose to interleave normally, which means taking
one element from each sequence in turn:
fun appendq (Nil, yq) = yq
| appendq(Cons(x, xf), yq) = Cons(x, fn()=> appendq(xf(), yq));

fun interleave (Nil, yq) = yq
| interleave (Cons(x, xf), yq) = Cons(x, fn()=>interleave(yq, xf()));

Functionals
C':.#&!
Filter demands elements from the sequence until it finds one which satisfies the predicate.
fun filterq p Nil = Nil
| filterq p (Cons(x, xf)) = if (p x) then Cons(x, filterq p xf())
 else filterq p xf();

;.#&/.#*!
Iterates generalizes ‘from’, creating the next element by calling function f. It is also the
sequential equivalent of map.
fun iterates f x = Cons(x, fn()=>iterates f (f x));

Numerical Computations
Lazy Lists can easily be used to complete mathematical functions, for example finding the
square root of a number using the Newton-Raphson approximation.

EA/I8:#+!NZ%/&#!"00.!
fun next a x = (a/x + x) / 2.0;

fun within (eps:real) (Cons(x, xf)) =
 let val Cons(y, yf) = xf()
 in if abs(x-y) <= eps then yf
 else within eps (Cons(y, yf))
 end;

fun root a = within 1E~6 (iterates (next a) 1.0);

!
Queues and Search Strategies
Breadth-First vs Depth-First Tree Traversal
In the case of searching, we can represent all the data in a binary tree (using it as the 4#$'*'0(!
.&##), while we are looking for solution nodes.

Ashwin Ahuja – Foundations of Computer Science

 18

In the case of a depth first search, we search one subtree in full before moving on and
searching through the rest of the tree. If simply a solution (of non-caring depth) is required to
be found, then a depth-first search is generally effective, since it is so easy to code.

In the case of the breadth first search, we search every node at a certain level (depth) before
moving onto the next depth. It will always generate the shortest path to the solution (if this
is relevant).
Breadth-First Traversal
V*'()! ,88#(4 !
Breadth-first searches are often not very efficient, but it is especially bad when you use an
append, as below. This is because the list ‘ts’ can be very long, containing all of the items that
need to be visited. Therefore, appending only two items to it (which requires copying
everything in ts) would be very inefficient.
fun nbreadth [] = []
| nbreadth (Lf :: ts) = nbreadth ts
| nbreadth (Br(v, t, u) :: ts) = v :: nbreadth(ts @ [t, u]);

\%#%#*!
BFS becomes much faster if we replace lists by queues. Queues are a sequence, allowing
elements to be taken from the head and added to the tail. This is FIFO discipline (First-In-First-
Out). While they could be implemented using lists (and append) this would be highly
inefficient. It would be better off implementing them with a functional array as long as we
have a function to delete the first element. Here, each operation would take O(log n) time.
Conventional programming represents a queue using an array with two indices to point to
the beginning and end of the queue which may wrap around the end of the array. However,
this is difficult to implement and the length must have an upper bound.

However, using two lists, you can get a representation of queues, which when take O(1) time
when /I0&.'[#4 !J/D#&/)#4!0D#&!.3#!:'5#.'I#!05!.3#!Z%#%#L?

You have a pair of lists to represent the queue, adding items to the rear list. You remove items
from the front list and if the front is empty, you move items from the rear to the front (reverse
the rear list and make it the front list).

A queue must offer the following:
¥! Qempty – empty queue
¥! Qnull – tests whether queue is empty
¥! Qhd – returns the element at the head of the queue
¥! Deq – discards the element at the head of the queue
¥! Enq – adds an element to the rear of the queue
!
The code is therefore as follows:
datatype 'a queue = Q of 'a list * 'a list

fun norm(Q([], tls)) = Q(rev tls, [])
| norm q = q;

Ashwin Ahuja – Foundations of Computer Science

 19

fun qnull(Q([],[])) = true
| qnull (_) = false;

fun enq(Q(hds, tls), x) = norm(Q(hds, x :: tls));

fun deq(Q(x::hds, tls)) = norm(Q(hds, tls));

val qempty = Q([],[]);

fun qhd(Q(x::_, _)) = x;

Looking at the time-complexity of queues, for each element which is enqueued to the queue
(and then subsequently dequeued), it takes 1 cons to add it to the rear list and 1 cons to move
it to front list whenever it is required. Therefore it is O(2) which is equivalent to O(1).

However, the time when the queue must be normalised is determined at run time and so
there may be unpredictable delays. Therefore, this approach is unsuitable for real-time
programming.

M/*#!EA8&#**'0(!
Case can be used for pattern matching, as per this example:
fun wheels v =
 case v of Bike => 2
 | Motorbike _ => 2
 | Car robin => if robin then 3
 else 4
 | Lorry w => w;

1CN!M04#!
fun bfs q =
 if qnull q then []
 else
 case qhd of
 Lf => bfs(deq q)
 | Br(v, t, u) => v :: bfs(enq(enq(deq q, t), u));

!
Iterative Deepening
In some places, a BFS is not practical for large trees, taking up far too much space, as large
parts of the tree have to be stored. A BFS search examines the number of nodes = the below
where b is the branching factor and d is the depth:

1 + 𝑏 + 𝑏K +⋯+ 𝑏N =
𝑏NOP − 1
𝑏 − 1 = 𝑂(𝑏N)

Since all the nodes that are examined are also stored, the space requirements are also equal
to O(bd).

Depth-first iterative deepening combines the space efficiency of depth-first searching with
the ‘nearest-first’ property of breadth-first searching. It performs repeated depth-first
searching with increasing depth bounds, each time discarding the result of the previous
search. Therefore, it searches to depth 1, then depth 2 etc.

Ashwin Ahuja – Foundations of Computer Science

 20

It can be shown that the time needed for iterative deepening to reach depth d is only Q
QRP

times that for the time required for a breadth first search. This is a constant factor – both
have time complexity = O(bd), but iterative deepening has space complexity of O(d).

Depth-First Search
N./$G*!
Stack is a sequence such that items can be added or removed from the head only, obeying a
LIFO (Last-In-First-Out) discipline. Lists can easily be used to implement stacks. However,
stacks are often regarded as an imperative data structure (popping or pushing should affect
the original stack not return a new one).

In conventional programming languages, a stack is often implemented by storing items in an
array, using a stack pointer to count them.

Stacks must have the following things:
¥! Empty – ability to have an empty stack
¥! Null – ability to test for an empty stack
¥! Top – ability to return the item at the top of stack
¥! Pop – ability to remove the item at the top of the stack
¥! Push – ability to add an element to the top of the stack

Search Methods Conclusion
1.! DFS – use a stack

a.! It is efficient but incomplete – does not always return the best solution
2.! BFS – use a queue

a.! Effective but uses too much space
3.! Iterative deepening – effectively uses (1) to get the benefits of (2)

a.! It trades time for space
4.! 1#*.]C'&*.!X!%*#*!/!8&'0&'.7!Z%#%#

a.! Nodes are an ordered sequence, placing a ranking function to the nodes. For
example, may be to estimate the distance from the node to a solution. If the
estimate is good, the solution is located quickly.

b.! The priority queue can be kept as a sorted list, although this is slow. Binary search
tree would be better.

Polynomial Arithmetic
A polynomial is a linear combination of products of certain variables. Polynomials in one
variable is called univariate. For the section, we only consider univariate closed-form
polynomials. Being able to do maths on polynomials is highly useful, as it would allow us to
derive and use formulas for science and engineering.

Data Structure for Polynomials
We might represent a polynomial with a dense representation – using a list of coefficients [an,
an-1, …, a0] where the formula is anxn + an-1xn-1. This is very inefficient if many coefficients are
zero.

Ashwin Ahuja – Foundations of Computer Science

 21

Therefore, better to use a sparse representation, where a list of (exponent, coefficient) pairs
with only non-zero coefficients being stored. For the coefficient, while it should be a rational
number (stored as an integer * integer (a/b)), it will be stored as a real, because this makes it
much easier to complete.

Therefore, polynomial will have type of (int*real) list, representing the sum of each term.
Additionally, to promote efficiency, the pairs will be stored in descending order of exponents,
with only one term having each exponent.

Polynomial Operations
In specifying a module for polynomial operations, eg Poly, you must define the functions and
the ML signature of each function. They may be:
¥! Poly is the type of univariate polynomials
¥! Makepoly makes a polynomial from a list
¥! Destpoly returns a polynomial as a list
¥! Polysum adds two polynomials
¥! Polyprod multiplies two polynomials
¥! Polyquorem computes a quotient and a remainder

2U!N')(/.%&#!
type poly
val makepoly : (int*real)list -> poly
val destpoly : poly -> (int*real)list
val polysum : poly -> poly -> poly
val polyprod : poly -> poly -> poly
val polyquorem : poly -> poly -> poly * poly

Addition
fun polysum [] us = us : (int*real)list
| polysum ts [] = ts
| polysum((m,a) :: ts) ((n, b)::us) =
 if (m > n) then (m,a)::polysum ts ((n,b)::us)
 else if (m < n) then (n,b) :: polysum ((m,a)::ts) us
 else if a+b = 0.0 then polysum ts us
 else (m, a+b) :: polysum ts us;

Multiplication
Do multiplication in a very merge-sort like method, computing products of roughly equal parts
and then merges them together.
fun termprod (m,a) (n,b) = (m+n, a*b) : (int*real);

fun polyprod [] us = []
| polyprod [(m,a)] us = map (termprod(m,a)) us
| polyprod ts us =
 let val k = length ts div 2
 in polysum (polyprod (take(ts, k)) us) (polyprod (drop(ts, k)))
 end;

Ashwin Ahuja – Foundations of Computer Science

 22

Division
fun polyquorem ts ((n,b)::us) =
 let fun quo [] qs = (rev qs, [])
 | quo ((m,a)::ts) qs =
 if (m<n) then (rev qs, (m,a)::ts)
 else quo(polysum ts (map (termprod(m-n, ~a/b)) us)) ((m-n, a/b) :: qs)
 in quo ts []
 end;

fun polyquo ts us = #1(polyquorem ts us)
and polyrem ts us = #2(polyquorem ts us)

(* If k is any positive integer constant, then k is the ML function to return the
kth component of a tuple. Tuples are a special case of ML records, and the #
notation works for arbitrary record fields. *)

GCD
fun polygcd [] us = us
| polygcd ts us = polygcd (polyrem us ts) ts;

This is using Euclid’s algorithm, however, for polynomials its behaviour is slightly odd. It gives
the GCD of x2 + 2x + 1 and x2 – 1 as -2x – 2 and x2 + 2x + 1 and x5 + 1 as 5x + 5. Both should
have the answer x + 1. However, this difficulty can be fixed by dividing through by the leading
coefficient.

However, more importantly, the algorithm is far too slow, and therefore this algorithm
shouldn’t be used.

Procedural Programming
Definition
¥! Procedural programming is programming where the programming state is repeatedly

transformed by the execution of commands or statements.
o! A state change might be local to the machine and consist of updating a variable or

array, or consist of sending data to the outside world. (Even reading data counts
as a state change, since this act normally removes the data from the environment).

¥! It also provides primitive commands and control structures for combining them.
o! Primitive commands include /**')(I#(. for updating variables and '(8%.!^!0%.8%.!

commands for communication
o! Control commands include branching, iteration and procedures.

¥! Use abstractions of the computer’s memory
o! "#5#&#($#*!to memory cells
o! ,&&/7*!for blocks of memory cells
o! U'(G#4!N.&%$.%&#*_!especially linked lists

References
References offer a way of creating a reference, thereby getting at a specific memory cell which
prevails.

Ashwin Ahuja – Foundations of Computer Science

 23

The function, ref creates a reference (a location), allocating a new location in memory. It
initially contains the value given by the expression E. Though an ML function, it is not a
mathematical function – same input will likely give different output, ie ref(0) = ref(0) will
return false.

The function ! dereferences a reference, returning its contents.

The assignment function (returns unit) P:=E evaluates expression P, which must return a
reference p. It stores at address p, the value of E.

ref 'a -> 'a ref
! 'a ref -> 'a
op := 'a ref * 'a -> unit

F?1?K!assignment will never change val bindings, they are immutable. Only the contents of
the reference are mutable.
F?1?W!most languages do not have an explicit dereferencing operator (like !) because of its
inconvenience. Instead, by convention, occurrences of the reference on the left hand side of
the ‘:=’ denote locations and those on the right denote the contents. (Sometimes there is a
special ‘address of’ available to override the convention.

Commands
A command refers to an expression that has an effect on the state. All expressions denote
some value, but they can return (), which conveys no information.

The construct C1; C2; …; Cn evaluates the expressions C1 to Cn in the order given and returns
the value of Cn. The values of the other expressions are discarded; their only purpose is to
change the state.

Iteration
ML’s only looping construct is while, which returns the value (). The construct works like ‘while
B do C’, where B is a Boolean expression and C is series of commands with a return value (this
can be a unit).

EA/I8:#+!1/(G!,$$0%(.!
fun makeAccount (initBalance : int) =
 let val balance = ref initBalance
 fun withdraw amt = if amt>!balance then raise TooMuch(amt-!balance)
 else (balance := !balance - amt; !balance)
 in withdraw end;

> val makeAccount = fn : int -> (int -> int)

Ashwin Ahuja – Foundations of Computer Science

 24

!
The function makeAccount models a bank. Calling the function with an initial balance creates
a new reference (balance) to maintain the account balance and returns a function (withdraw)
having sole access to that reference.

Each call to makeAccount returns a copy of withdraw holding a fresh instance of the reference
balance. There is no access to the account balance except via the corresponding withdraw
function. If that function is discarded, the reference cell becomes unreachable – the computer
will eventually get rid of it.

We can generalise makeAccount to return several functions that jointly manage information
held in shared references. (The functions might be packaged using ML records, which are
discussed elsewhere. Most procedural languages do not support the concept of private
references, although OOP has it as a basic theme).

Arrays
ML arrays are like references that hold several elements instead of one. The primitives are as
follows:

This has ML signature of:

Other things in ML
2%./-:#!J:' (G#4L!:'*.* are easy to create:
datatype 'a mlist = Nil | Cons of 'a * ‘a mlist ref;

ML’s system of 204%:#*!includes *.&%$.%&#*, which can be seen as encapsulated groups of
4#$:/&/.'0(*!/(4!*')(/.%&#* , which are specifications of structures listing the (/I#!/(4!.78#!
05! #/$3! $0I80(#(. . Finally, there are 5%($.0&*>!which are analogous to functions that
combine a number of argument structures, and which can be used to plug program
components together.

ML also provides comprehensive input / output primitives for various types of file and
operating system.

